• Title/Summary/Keyword: Optical energy gap

Search Result 458, Processing Time 0.024 seconds

A Study on the Magneto-optical Properties and Application of Diluted Magnetic Semiconductor Cd1-xMnxTe (묽은 자성 반도체 Cd1-xMnxTe의 자기 광학적 특성과 응용성 연구)

  • Hwang, Young-Hun;Um, Young-Ho;Cho, Sung-Lae
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.5
    • /
    • pp.186-190
    • /
    • 2009
  • We investigated the magneto-optical properties and application of diluted magnetic semiconductors Cd$_{1-x}$Mn$_x$Te crystals with various Mn contents grown using a vertical Bridgman method. This material crystallizes in the zinc-blende structure for values of x < 0.82. The band-gap energy was depended on Mn mole fraction x linearly and increased with decreasing temperature. The Faraday rotation was increased as the photon energy increased near to that of the fundamental band gap and its increased with increasing Mn mole fraction. Optical isolator using the Cd$_{0.62}$Mn$_{0.38}$Te crystal shows that the isolation and insertion loss are 45 dB and 0.35 dB at 650 nm, respectively.

Optical Preperties of HgS and HgS : Co Crystals and Films (HgS 및 HgS : Co 결정과 박막의 광학적 특성)

  • 박복남;방태환;김종룡;장우선;최성휴
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.213-217
    • /
    • 1996
  • HgS and HgS: Co crystals and films grown by the slow cooling and the chemical bath deposition method were used to measure their crystal structure and their optical absorption spectra. HgS and HgS: Co crystals are hexagonal structure with the lattice constant $a_0=4.155{\AA}$, $c_0=9.505{\AA}$ for HgS and $a_0=4.148{\AA}$, $c_0=9.462{\AA}$ for HgS and $a_0=4.135{\AA}$, $c_0=9.442{\AA}$ for HgS: Co, respectively. The optical energy gap of these crystals are given as 2.040 eV for HgS and 1.900 eV for HgS: Co, and the optical energy gap of these films were 2.440 eV for HgS and 1.940 eV for HgS: Co at room temperature, respectively.

  • PDF

Effects of Aluminum Chloride Concentrations on Structural and Optical Properties of Al-doped ZnO Thin Films Prepared by the Sol-Gel Method (졸겔법으로 제작된 Al-doped ZnO 박막의 Aluminum Chloride 농도에 따른 구조적 및 광학적 특성)

  • Cho, Guan Sik;Kim, Min Su;Yim, Kwang Gug;Lee, Jaeyong;Leem, Jae-Young
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.847-854
    • /
    • 2012
  • Al-doped ZnO (AZO) thin films were grown on quartz substrates by the sol-gel method. The effects of the Al mole fraction on the structural and optical properties of the AZO thin films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-VIS spectroscopy. The particle size of the AZO thin films decreased with an increase in Al concentrations. The optical parameters, the optical band gap, absorption coefficient, refractive index, dispersion parameter, and optical conductivity, were studied in order to investigate the effects of Al concentration on the optical properties of AZO thin films. The dispersion energy, single-oscillator energy, average oscillator wavelength, average oscillator strength, and refractive index at an infinite wavelength of the AZO thin films were affected by the Al incorporation. The optical conductivity of the AZO thin films also increased with increasing photon energy.

Arsenic Doping of ZnO Thin Films by Ion Implantation (이온 주입법을 이용한 ZnO 박막의 As 도핑)

  • Choi, Jin Seok;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.347-352
    • /
    • 2016
  • ZnO with wurtzite structure has a wide band gap of 3.37 eV. Because ZnO has a direct band gap and a large exciton binding energy, it has higher optical efficiency and thermal stability than the GaN material of blue light emitting devices. To fabricate ZnO devices with optical and thermal advantages, n-type and p-type doping are needed. Many research groups have devoted themselves to fabricating stable p-type ZnO. In this study, $As^+$ ion was implanted using an ion implanter to fabricate p-type ZnO. After the ion implant, rapid thermal annealing (RTA) was conducted to activate the arsenic dopants. First, the structural and optical properties of the ZnO thin films were investigated for as-grown, as-implanted, and annealed ZnO using FE-SEM, XRD, and PL, respectively. Then, the structural, optical, and electrical properties of the ZnO thin films, depending on the As ion dose variation and the RTA temperatures, were analyzed using the same methods. In our experiment, p-type ZnO thin films with a hole concentration of $1.263{\times}10^{18}cm^{-3}$ were obtained when the dose of $5{\times}10^{14}$ As $ions/cm^2$ was implanted and the RTA was conducted at $850^{\circ}C$ for 1 min.

Effects of strain on the optical and magnetic properties of Ce-doped ZnO

  • Xu, Zhenchao;Hou, Qingyu;Guo, Feng;Jia, Xiaofang;Li, Cong;Li, Wenling
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1465-1472
    • /
    • 2018
  • The magnetic and optical properties of Ce-doped ZnO systems have been widely demonstrated, but the effects of different strains of Ce-doped ZnO systems remain unclear. To solve these problems, this study identified the effects of biaxial strain on the electronic structure, absorption spectrum, and magnetic properties of Ce-doped ZnO systems by using a generalized gradient approximation + U (GGA + U) method with plane wave pseudopotential. Under unstrained conditions, the formation energy decreased, the system became stable, and the doping process became easy with the increase in the distances between two Ce atoms. The band gap of the systems with different strains became narrower than that of undoped ZnO without strain, and the absorption spectra showed a red shift. The band gap narrowed, and the red shift became weak with the increase of compressive strain. By contrast, the band gap widened, and the red shift became significant with the increase of tensile strain. The red shift was significant when the tensile strain was 3%. The systems with -1%, 0%, and 1% strains were ferromagnetic. For the first time, the magnetic moment of the system with -1% strain was found to be the largest, and the system showed the greatest beneficial value for diluted magnetic semiconductors. The systems with -3%, -2%, 2%, and 3% strains were non-magnetic, and they had no value for diluted magnetic semiconductors. The ferromagnetism of the system with -1% strain was mainly caused by the hybrid coupling of Ce-4f, Ce-5d, and O-2p orbits. This finding was consistent with Zener's Ruderman-Kittel-Kasuya-Yosida theory. The results can serve as a reference for the design and preparation of new diluted magnetic semiconductors and optical functional materials.

The U-type Model on Ag Doping effect in Amorphous Chalcogenide thin films (비정질 칼코게나이드박막으로서의 Ag 도핑효과에 대한 U-형 모델)

  • 김민수;이현용;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.50-53
    • /
    • 1995
  • In this paper we have obtained property by considering the change of optical energy gap as a function of photo-does for exposing photo on Ag/a-Se$\sub$75/Ge$\sub$25/ thin films. This U-type property was obsered for all photo-exposing except for blu-pass filtered Hg lamep. Expecially, very large band shift(~0.3[eV]) is obtained by exposing He-Ne laser (6328[${\AA}$]). It is impossible to explain this property for exposing He-Ne and semiconductor laser through DWP model, which was explained for photo-exposing above the energy gap. Therefore we suggest a new modified model of DWP model for Ag/a-Se$\sub$75/Ge$\sub$25/ bilayer thin films.

  • PDF

Photoluminescence of Hexagonal Boron Nitride (h-BN) Film

  • Jin, Moon-Seog;Kim, Nam-Oh
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.637-639
    • /
    • 2010
  • Hexagonal boron nitride (BN) films were prepared. The process involved, spraying BN powder-dispersed $H_3BO_4-BCl_3$-ethyl alcohol solution on quartz plates, and the drying off quartz plates before, and annealing at $1070^{\circ}C$ in a nitrogen atmosphere. The optical energy band gap of the BN films was 5.28 eV. Photoluminescence peaks with energies of 3.44, 3.16, 2.97, and 2.35 eV at 10 K were observed and analyzed. Accordingly, these have resulted from donor-acceptor pair recombinations.

Effect of Ga, S Additions in CuInSe$_2$ for Solar Cell Applications

  • Kim, Kyoo-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.4
    • /
    • pp.191-195
    • /
    • 2004
  • Gallium or sulphur additions in $CuInSe_2$ were prepared using RF magnetron sputtering and pulsed laser deposition respectively. All of the observed thin films shows a chalcopyrite structure with the S and Ga addition increases the favourable (112) peak. The optical absorption coefficients were slightly decreased. The energy band gap of films could be shifted from 1.04 to 1.68 eV by adjusting the mole ratio of S/(S+Se) and Ga/(In+Ga). It is possible to obtain the optimum energy band gap by adding S or Ga solute at a certain ratio in favour of Se and In respectively. It is also necessary to control the ratio of Ga and S additions and to retain a certain portion of In and Se to provide better properties of thin films.

Crystal Growth of $Cd_4SnSe_6:Co^{2+}$ Single Crystals ($Cd_4SnSe_6:Co^{2+}$ 단결정의 성장)

  • Kim, D.T.;Song, M.J.;Kim, H.G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.607-608
    • /
    • 2005
  • In this paper, author describe the undoped and $Co^{2+}$(0.5mole%) doped $Cd_4SnSe_6$ single crystals were grown by the chemical transport reaction(CTR) method. The grown single crystals crystallize in the monoclinic structure of space group Cc and have the direct band gap structure. The energy gaps of them are 1.68 eV for $Cd_4SnSe_6$ and 1.50 eV for $Cd_4SnSe_6:Co^{2+}$ at 300K respectively.

  • PDF

Optical proper of S solute CuInSe$_2$ thin film (S를 고용한 CuInSe$_2$ 박막의 광학 특성)

  • 김규호;이재춘;김민호;배인호
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.2
    • /
    • pp.136-143
    • /
    • 1997
  • The photvoltaic power system has received considerable attention as the petroleumalterative energies to the environmental problems in the wored scale. $CuLnSe_2$is one ofthe most promising materials for the fabrication of large-area modules and low cost photovoltaic devices. Sulfur solute CuInSe2 thin films were prepared by RF sputtering using powder targer which were previously compacted by powder of $Cu_2Se, \;In_2Se_3, \;Cu_2S, \;and\;In_2S_3$ in various ratios. The results induicated that the sulfur ratio, the(112) texture, and the energy band gap were increased by the increase of the S/(S+Se) that was controlled by stoichiometric compound. The energy band gap can be shifted from 1.04eV to 1.50eV by abjusting the S/(S+Se) ratio, which maich it possible to obtain perfect match to the solar spectrum.

  • PDF