• Title/Summary/Keyword: Optical delay

Search Result 388, Processing Time 0.026 seconds

An Optical True Time-Delay for Two-Dimensional X-Band Phased Array Antennas (2차원 X-밴드 위상 배열 안테나용 광 실시간 지연선로)

  • Jung, Byung-Min;Kim, Sung-Chul;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.287-294
    • /
    • 2005
  • In this paper, an optical true time-delay (TTD) for two-dimensional (2-D) phased array antennas (PAAs), composed of a multi-wavelength optical source and a fiber optic delay line matrix consisting of $2\times2$ optical switches with optical fiber connected between cross ports, has been proposed. A 2-bit $\times4-bit$ optical TTD for 10-GHz 2-D PAAs has been implemented by cascading a wavelength dependent TTD (WD-TTD) and a wavelength independent TTD (WI-TTD). The unit time delay for WD-TTD and WI-TTD have been chosen as ${\Delta}T=12ps$ and $\Delta\tau=6ps$, respectively. Time delay have been measured at all radiation angles. The maximum delay error for WD-TTD was measured to be 3 ps due to jitter incurred from gain switching. For the case of WI-TTD, error was within ${\pm}\;1\;ps$. The proposed optical TTD for a 2-D PAA has the following advantages: 1) higher gain compared to one-dimensional linear PAAs, 2) stabilization of optical power and wavelength by using a multi-wavelength optical source, and 3) fast beam scan and simple operation due to electronic control of the $2\times2$ optical switches matrix on a column-by-column basis.

Fabrication of an On System based on an Optical Delay line with Cylindrical PZT (실린더형 압전소자 광지연선을 이용한 광 간섭형 단층촬영(OCT) 시스템 제작)

  • Park, Sung-Jin;Kim, Young-Kwan;Kim, Yong-Pyung
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.159-164
    • /
    • 2006
  • We demonstrate a compact optical coherence tomography(OCT) system based on the optical fiber delay line controlled by a cylindrical piezo-electric transducer(PZT). An 18-m length of single mode fiber is wrapped under constant tension around a PZT. Approximately 134 windings are used. Wraps of the long length of fiber allow the small expansion of the PZT to be magnified to an optical path length delay of 0.78 m. The OCT system shows characteristics for 2-dimensional imaging, exhibiting 96.9dB of signal-to-noise ratio(SNR), $18.6{\pm}0.5\;{\mu}m$ of axial resolution, and $5\;{\mu}m$ of lateral resolution with samples.

Optical IIR lattice fiber filter design for optimum of optical signal energy (광신호 에너지 최적화를 위한 IIR 격자형 광파이버필터 설계)

  • 이채욱;김신환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1481-1488
    • /
    • 1995
  • Due to the low loss, broadband and accurate short time delay properties of optical fiber, it has attracted as a delay medium for high speed and broad-band signal processing. In this paper, we consider the coherent optical fiber filter of IIR lattice structure, which uses coherent light sources and consists of directional couplers whose coupling coefficients are restricted between 0 and 1. Considering restrictions of directional coupler, the design formulae and condition for realibility of optical fiber filter of IIR lattice structure which makes the optimal use of optical signal energy are derived.

  • PDF

Mode Analysis and Modal Delay Measurement of a Few-Mode Fiber by Using Optical Frequency Domain Reflectometry

  • Ahn Tae-Jung;Moon Sucbei;Youk Youngchun;Jung Yongmin;Oh Kyunghwan;Kim Dug Young
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.54-58
    • /
    • 2005
  • A novel mode analysis method and differential mode delay measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. The differential mode delay (DMD) of the sample fiber was measured to be 16.58 ps/m with a resolution of 1.5 ps/m. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.

Multiple Access Interference Suppressed Sensor Network Using Optical CDMA with Bipolar Receiver and Modified PN Code (간섭잡음을 억압한 양극성 수신기와 PN 부호에 의한 광 CDMA 방식을 사용한 센서 네트워크)

  • Park Sang-Jo;Kim Bong-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.311-316
    • /
    • 2006
  • We propose the optical sensor network using optical CDMA with bipolar receiver and modified Pseudorandom Noise codes which are widely used in the wireless communication network. We numerically analyze the performances in the optical sensor network. In the proposed network, multiple access interferences between two sensors are suppressed by performing synchronization between the optical encoder and the optical decoder and adjusting the delay times of optical delay lines. Numerical simulations confirm that the performance can be acquired by suppressing the beat noise among optical signals as the number of sensors increases.

Microwave Photonic Filter Using Optical True-Time-Delay Line Matrix (광 실시간 지연선로 행렬을 이용하는 마이크로웨이브 포토닉 필터)

  • Jung, Byung-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.213-217
    • /
    • 2015
  • Microwave Photonic(MWP) filters capable of use a bandpass filter or a notch filter with large bandwidth have been proposed. 4-lines${\times}$2-bit fiber-optic delay lines with a unit time-delay difference of 50 ps were experimentally realized. By changing the time-delay difference and the coefficients of microwave-modulated optical signals, the bandpass and notch filters were implemented and characterized.

Tunable Optical Delay Line Based on Polymer Single-Ring Add/Drop Filters and Delay Waveguides (폴리머 단일 링 Add/Drop 필터와 지연 도파로로 구성된 튜닝 가능 광 신호 지연기)

  • Kim, Kyoungrae;Moon, Hyunseung;Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.5
    • /
    • pp.174-180
    • /
    • 2016
  • A tunable optical delay line is designed, fabricated, and characterized. The tunable delay line consists of four polymer-ring add/drop filters with delay waveguides between adjacent ones. The polymer waveguide is a buried structure, designed to be square with core width and height of $1.8{\mu}m$. The refractive indices of the core and cladding polymer are 1.48 and 1.37 respectively. The large index difference and small cross section of the waveguide enable us to realize a compact device using a small radius of curvature. Four pairs of electrodes are evaporated above the add/drop filters to provide heating currents for thermal tuning. In measurements we can identify variable time delays of 110, 225, and 330 ps in proportion to the number of delay lines.

A 4-bit optical true time-delay for phased array antennas using 2×2 optical MEMS switches and fiber-optic delay lines (2×2 광 MEMS 스위치와 광섬유 지연선로를 이용한 위상배열 안테나용 4-비트 광 실시간 지연선로)

  • 정병민;윤영민;신종덕;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.385-390
    • /
    • 2004
  • In this paper, we designed a 4-bit optical true time-delay(TTD) for phased array antennas(PAAs), which is composed of a wavelength-fixed optical source, 2 ${\times}$ 2 optical MEMS switches, and fiber-optic delay lines. A 4-bit TTD with a unit time delay difference of 6 ps for 10-GHz PAAs has been implemented. Measurement results on time delay show an error of -0.4 ps at maximum, corresponding to a radiation angle error of less than 1.63$^{\circ}$. Thus, the TTD implemented in this research performs in excellent agreement with theory. Each TTD line, composed of MEMS switches and fiber-optic delay lines, connected to the corresponding antenna element has insertion loss in between 1.36 ㏈ and 2.40 ㏈ depending upon the setup of the switches. On the other hand, the insertion loss difference between TTD lines was 0.32 ㏈ at maximum for a fixed radiation angle. The TTD structure proposed in this paper might be more reliable and economical than those previously proposed using tunable wavelength sources if proper power equalization either with gain control of RF amplifiers or variable attenuators is achieved.

Development of RSOD using optical phase modulator (광위상 변조기를 이용한 RSOD 개발)

  • Hwang, Dae-Seok;Lee, Young-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.14-18
    • /
    • 2006
  • Optical interferometer is used for various optical measurement fields in optical metrology and biomedical measurements. In an optical interferometer, optical delay line has to change the optical path length of a reference arm to match with that of a sample in and it's speed was limited by reference arm movement speed. In this paper, we proposed an all-fibered RSODRapid Scanning-speed Optical Delay) without any mechanical movement, and we applied this system to optical interferometer. Experimental setup is consist of pulse laser source (center wavelength 1304nm, pulse width 30ps, repetition rate 10GHz), two phase modulators and dispersive shifted fiber. As experimental results, we obtain the maximum time delay of 11ps at 10MHz repetition rate, and it is easily tuneable the time delay by modulation frequency and modulation voltage.