• Title/Summary/Keyword: Optical coverage ratio

Search Result 9, Processing Time 0.026 seconds

Spatial Frequency Coverage and Image Reconstruction for Photonic Integrated Interferometric Imaging System

  • Zhang, Wang;Ma, Hongliu;Huang, Kang
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.606-616
    • /
    • 2021
  • A photonic integrated interferometric imaging system possesses the characteristics of small-scale, low weight, low power consumption, and better image quality. It has potential application for replacing conventional large space telescopes. In this paper, the principle of photonic integrated interferometric imaging is investigated. A novel lenslet array arrangement and lenslet pairing approach are proposed, which are helpful in improving spatial frequency coverage. For the novel lenslet array arrangement, two short interference arms were evenly distributed between two adjacent long interference arms. Each lenslet in the array would be paired twice through the novel lenslet pairing approach. Moreover, the image reconstruction model for optical interferometric imaging based on compressed sensing was established. Image simulation results show that the peak signal to noise ratio (PSNR) of the reconstructed image based on compressive sensing is about 10 dB higher than that of the direct restored image. Meanwhile, the normalized mean square error (NMSE) of the direct restored image is approximately 0.38 higher than that of the reconstructed image. Structural similarity index measure (SSIM) of the reconstructed image based on compressed sensing is about 0.33 higher than that of the direct restored image. The increased spatial frequency coverage and image reconstruction approach jointly contribute to better image quality of the photonic integrated interferometric imaging system.

Characteristics of the Photonic Bandgaps in Two-dimensional Photonic Crystals with a Square Lattice by FDTD Simulation (FDTD 시뮬레이션을 이용한 정방형 2차원 광자결정에서의 광자 밴드갭 특성)

  • Yeo, Jong-Bin;Yang, Hoe-Young;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • Characteristics of the photonic bandgaps (PEGs) in two-dimensional photonic crystals (2D PCs) with a square lattice have theoretically studied using a finite difference time domain (FDTD) simulation. In this paper, we propose a concept of optical coverage ratio (OCR) as a new structural parameter to determine the PEGs for E-polarized light. The OCR is an optically compensated filling factor. It is possible to normalize the PEGs of 2D PCs by introducing the OCR.

Independent Component Analysis of Mixels in Agricultural Land Using An Airborne Hyperspectral Sensor Image

  • Kosaka, Naoko;Shimozato, Masao;Uto, Kuniaki;Kosugi, Yukio
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.334-336
    • /
    • 2003
  • Satellite and airborne hyperspectral sensor images are suitable for investigating the vegetation state in agricultural land. However, image data obtained by an optical sensor inevitably includes mixels caused by high altitude observation. Therefore, mixel analysis method, which estimates both the pure spectra and the coverage of endmembers simultaneously, is required in order to distinguish the qualitative spectral changes due to the chlorophyll quantity or crop variety, from the quantitative coverage change. In this paper, we apply our agricultural independent component analysis (ICA) model to an airborne hyperspectral sensor image, which includes noise and fluctuation of coverage, and estimate pure spectra and the mixture ratio of crop and soil in agricultural land simultaneously.

  • PDF

Method for Locating Arc-events by Utilizing Transmission Loss of Plastic Optical Fiber (플라스틱 광섬유의 손실 특성을 활용한 아크플래시 위치추적 방법)

  • Jeong, Hoonil;Kim, Young Ho;Kim, Youngwoong;Rho, Byung Sup;Kim, Myoung Jin
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.280-284
    • /
    • 2016
  • For an arc-flash protection system, the selection of arc-flash sensor in implementation is largely dependent on the coverage area and the spatial resolution. Typically, a point sensor is used to accurately measure an arc event within a very narrow region; whereas, a loop or a line sensor can cover several electrical compartment at the same time, but with a poor resolution. In this work, a novel scheme for an arc-flash sensor was developed by making use of the transmission loss of plastic optical fibers (POFs) to cover a broad range with a high spatial resolution. By relating the amplitude ratio of the arc-signals at the ends of the POF with the arc-location, arc events could be located with a resolution of ~5 cm within a spatial range of 10 m, which has not been reported yet.

Design and Development of a Single-photon Laser and Infrared Common Aperture Optical System

  • Wu, Hongbo;Zhang, Xin;Tan, Shuanglong;Liu, Mingxin;Wang, Lingjie;Yan, Lei;Liu, Yang;Shi, Guangwei
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • A single-photon laser and mid-wave infrared (MWIR) common aperture optical system was designed and developed to detect and range a long-distance civil aviation aircraft. The secondary mirror of the Ritchey-Chretien (R-C) optical system was chosen as a dichroic lens to realize the design of a common aperture system for the laser and MWIR. Point spread function (PSF) ellipticity was introduced to evaluate the coupling efficiency of the laser receiving system. A small aperture stop and narrow filter were set in the secondary image plane and an afocal light path of the laser system, respectively, and the stray light suppression ability of the small aperture stop was verified by modeling and simulation. With high-precision manufacturing technology by single point diamond turning (SPDT) and a high-efficiency dichroic coating, the laser/MWIR common aperture optical system with a 𝜑300 mm aluminum alloy mirror obtained images of buildings at a distance of 5 km with great quality. A civil aviation aircraft detection experiment was conducted. The results show that the common aperture system could detect and track long-distance civil aviation aircraft effectively, and the coverage was more than 450 km (signal-to-noise ratio = 6.3). It satisfied the application requirements for earlier warning and ranging of long-range targets in the area of aviation, aerospace and ground detection systems.

Normalized characteristics of the photonic bandgaps in two-dimensional photonic crystals with a hexagonal lattice by FDID simulation (FDTD 시뮬레이션을 이용한 육방정계형 2차원 광자결정에서의 광자밴드갭 특성 정규화)

  • Yeo, Jong-Bin;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.38-38
    • /
    • 2009
  • Characteristics of the photonic bandgaps (PBGs) in two-dimensional photonic crystals (2D PCs) with a hexagonal lattice have theoretically studied using a finite difference time domain (FDTD) simulation. In this research, we propose a concept of optical coverage ratio (OCR) as a new structural parameter to determine the PBGs for E-polarized light. The OCR is an optically compensated filling factor. It is possible to normalize the PBGs of 2D PCs by introducing the OCR.

  • PDF

An Analysis of the HEMP Interference Effect in OFDM System (OFDM 시스템에 미치는 HEMP 간섭 영향 분석)

  • Seong, Yun-Hyeon;Chang, Eun-Young;Yoon, Seok-beom
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.244-249
    • /
    • 2015
  • High-altitude electromagnetic pulse (HEMP) is generated from a nuclear burst at high altitudes above the Earth, the electromagnetic fields reach the ground nearly simultaneously with regard to the operation time of systems. The aim of this analysis is to inquire about HEMP characteristics and to analyze about effect in orthogonal frequency division multiplexing (OFDM) system. Specifically, HEMP characteristics are classified field sources, spatial coverage, time domain behavior, frequency spectrum and field intensities in this study. Bits error rate (BER) of the receiver with the software simulation is confirmed for the HEMP effect. Q-factor made a difference about interference duration by transfer characteristics of system. When Q factor is smaller, the recovery time from HEMP interference is short. To the contrary, if the Q factor is larger, the recovery duration is lasted longer by 300-600%.

Effects of Precursor Concentration and Current on Properties of ZnO Nanorod Grown by Electrodeposition Method (전착법으로 성장된 산화아연 나노막대의 특성에 전구체 농도 및 전착 전류가 미치는 효과)

  • Park, Youngbin;Nam, Giwoong;Park, Seonhee;Moon, Jiyun;Kim, Dongwan;Kang, Hae Ri;Kim, Haeun;Lee, Wookbin;Leem, Jae-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.198-203
    • /
    • 2014
  • ZnO nanorods have been deposited on ITO glass by electrodeposition method. The optimization of two process parameters (precursor concentration and current) has been studied in order to control the orientation, morphology, and optical property of the ZnO nanorods. The structural and optical properties of ZnO nanorods were systematically investigated by using field-emission scanning electron microscopy, X-ray diffractometer, and photoluminescence. Commonly, the results show that ZnO nanorods with a hexagonal form and wurtzite crystal structure have a c-axis orientation and higher intensity for the ZnO (002) diffraction peaks. Both high precursor concentration and high electrodeposition current cause the increase in nanorods diameter and coverage ratio. ZnO nanorods show a strong UV (3.28 eV) and a weak visible (1.9 ~ 2.4 eV) bands.

PEMOCVD of Ti(C,N) Thin Films on D2 Steel and Si(100) Substrates at Low Growth Temperatures

  • Kim, Myung-Chan;Heo, Cheol-Ho;Boo, Jin-Hyo;Cho,Yong-Ki;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.211-211
    • /
    • 1999
  • Titanium nitride (TiN) thin films have useful properties including high hardness, good electrical conductivity, high melting point, and chemical inertness. The applications have included wear-resistant hard coatings on machine tools and bearings, decorative coating making use of the golden color, thermal control coatings for widows, and erosion resistant coatings for spacecraft plasma probes. For all these applications as feature sizes shrink and aspect ratios grow, the issue of good step coverage becomes increasingly important. It is therefore essential to manufacture conformal coatings of TiN. The growth of TiN thin films by chemical vapor deposition (CVD) is of great interest for achieving conformal deposition. The most widely used precursor for TiN is TiCl4 and NH3. However, chlorine impurity in the as-grown films and relatively high deposition temperature (>$600^{\circ}C$) are considered major drawbacks from actual device fabrication. To overcome these problems, recently, MOCVD processes including plasma assisted have been suggested. In this study, therefore, we have doposited Ti(C, N) thin films on Si(100) and D2 steel substrates in the temperature range of 150-30$0^{\circ}C$ using tetrakis diethylamido titanium (TDEAT) and titanium isopropoxide (TIP) by pulsed DC plamsa enhanced metal-organic chemical vapor deposition (PEMOCVD) method. Polycrystalline Ti(C, N) thin films were successfully grown on either D2 steel or Si(100) surfaces at temperature as low as 15$0^{\circ}C$. Compositions of the as-grown films were determined with XPS and RBS. From XPS analysis, thin films of Ti(C, N) with low oxygen concentration were obtained. RBS data were also confirmed the changes of stoichiometry and microhardness of our films. Radical formation and ionization behaviors in plasma are analyzed by optical emission spectroscopy (OES) at various pulsed bias and gases conditions. H2 and He+H2 gases are used as carrier gases to compare plasma parameter and the effect of N2 and NH3 gases as reactive gas is also evaluated in reduction of C content of the films. In this study, we fond that He and H2 mixture gas is very effective in enhancing ionization of radicals, especially N resulting is high hardness. The higher hardness of film is obtained to be ca. 1700 HK 0.01 but it depends on gas species and bias voltage. The proper process is evident for H and N2 gas atmosphere and bias voltage of 600V. However, NH3 gas highly reduces formation of CN radical, thereby decreasing C content of Ti(C, N) thin films in a great deal. Compared to PVD TiN films, the Ti(C, N) film grown by PEMOCVD has very good conformability; the step coverage exceeds 85% with an aspect ratio of more than 3.

  • PDF