• Title/Summary/Keyword: Optical contrast

Search Result 511, Processing Time 0.029 seconds

Measuring the Thickness of Flakes of Hexagonal Boron Nitride Using the Change in Zero-Contrast Wavelength of Optical Contrast

  • Kim, Dong Hyun;Kim, Sung-Jo;Yu, Jeong-Seon;Kim, Jong-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.503-507
    • /
    • 2015
  • Using the reflectivity mode of an optical microscope, we analyzed the optical contrast to identify the layer number of flakes of hexagonal boron nitride on a $SiO_2$/Si substrate. Overall optical contrast in the visible range varies with the thickness of flakes. However, the wavelength of zero contrast exhibits a linear redshift of 0.53 nm per layer, independent of the $SiO_2$ thickness, and increases proportionally with $SiO_2$thickness. Experiments show good agreement with calculations and the results of AFM measurements. These results show that this zero-contrast approach is more accurate and easier than the reflectivity-contrast approach using the overall optical contrast.

Improved Human Factors of Electroluminescent Displays using Optical Interference Effect

  • Krasnov, Alexey N.;Kim, Woo-Young
    • Journal of Information Display
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 2003
  • We discuss main techniques to improve legibility of electroluminescent displays. Emphasis is placed on use of destructive optical interference to cancel ambient light reflected from the back electrode of the device. Basic optical principles and material composition of the optical interference contrast-enhancing stack (CES) are presented. We also describe the improved human factors of electroluminescent devices assisted with a CES. Achromatic contrast is the most important contributor to display's legibility. In some conditions color contrast may also be important. Contributing to both luminance and color contrast enhancement, the contrast-enhancing stack may play an important role in various display applications.

Numerical calculation of contrast transfer function for periodic line-space patterns (주기적인 선물체에 대한 Contrast Transfer Function의 수치계산)

  • 김형수;전영세;이종웅;김성호
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.6
    • /
    • pp.396-402
    • /
    • 1998
  • The measurement of OTF(optical transfer function) is used for evalution of imaging performance of optical system as a standard method. In the mass-production, the contrast measurement of projected patterns is also popular because of its simplicity. In this study, a computer program which evaluates the CTF(contrast transfer function) of optical system for periodic line-space patterns is developed by using the diffraction imaging theory. The MTF(modulation transfer function) and CTF of an aberrated system are evaluated and analyzed for the third order aberrations expressed by the C-coefficients and the Zemike polynomials.

  • PDF

Optical-reflectance Contrast of a CVD-grown Graphene Sheet on a Metal Substrate (금속 기판에 화학증기증착법으로 성장된 그래핀의 광학적 반사 대비율)

  • Lee, Chang-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.114-119
    • /
    • 2021
  • A large-area graphene sheet has been successfully grown on a copper-foil substrate by chemical vapor deposition (CVD) for industrial use. To screen out unsatisfactory graphene films as quickly as possible, noninvasive optical characterization in reflection geometry is necessary. Based on the optical conductivity of graphene, developed by the single-electron tight-binding method, we have investigated the optical-reflectance contrast. Depending on the four independent control parameters of layer number, chemical potential, hopping energy, and temperature, the optical-reflectance contrast can change dramatically enough to reveal the quality of the grown graphene sheet.

Simple Model of Bright-room Contrast Ratio Measurement System for Plasma Display Panels with Contrast Enhancement Film

  • Beom, Tae-Won;Park, Gi-Chan;Park, Jong-Rak;Kim, Young-Sik;Zhang, Jun;Song, Bu-Seup;Chun, Jong-Pil;Yoon, Ki-Cheol;Jang, Won-Gun
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • We have developed a simple model of a bright-room contrast ratio (BRCR) measurement system for plasma display panels (PDPs) adopting a contrast enhancement film (CEF) by using an illumination design tool. Only four model parameters were used, namely, total ambient illumination power delivered by fluorescent lamps, a panel scattering rate, illuminance of PDP white patterns, and the absorption coefficient of a color adjusting film. These parameters were determined by simple optical measurements and matching simulations. The proposed model was employed to predict the BRCR values of four different CEF samples, and the simulated ones were found to be in agreement with measured ones within about 10% relative-error.

Common-path Optical Interferometry for Stabilized Dynamic Contrast Imaging: A Feasibility Study

  • Seung-Jin, Lee;Young-Wan, Choi;Woo June, Choi
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 2023
  • The motion of organelles inside a cell is an important intrinsic indicator for assessing cell physiology and tissue viability. Dynamic contrast full-field optical coherence tomography (D-FFOCT) is a promising imaging technology that can visualize intracellular movements using the variance of temporal interference signals caused by biological motions. However, double-path interferometry in D-FFOCT can be highly vulnerable to surrounding noise, which may cause turbulence in the interference signals, contaminating the sample dynamics. Therefore, we propose a method for stabilized D-FFOCT imaging in noisy environments by using common-path interferometry in D-FFOCT. A comparative study shows that D-FFOCT with the proposed method achieves stable dynamic contrast imaging of a scattering phantom in motion that is over tenfold more noise-insensitive compared to the conventional one, and thus this imaging capability can provide cleaner motion contrast images. With the proposed approach, the intracellular dynamics of biological samples are imaged and monitored.

Contrast Enhancement of Laser Speckle Contrast Image in Deep Vasculature by Reduction of Tissue Scattering

  • Son, Taeyoon;Lee, Jonghwan;Jung, Byungjo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.86-90
    • /
    • 2013
  • Various methods have been proposed for enhancing the contrast of laser speckle contrast image (LSCI) in subcutaneous blood flow measurements. However, the LSCI still suffers from low image contrast due to tissue turbidity. Herein, a physicochemical tissue optical clearing (PCTOC) method was employed to enhance the contrast of LSCI. Ex vivo and in vivo experiments were performed with porcine skin samples and male ICR mice, respectively. The ex vivo LSCIs were obtained before and 90 min after the application of the PCTOC and in vivo LSCIs were obtained for 60 min after the application of the PCTOC. In order to obtain the skin recovery images, saline was applied for 30 min after the application of the PCTOC was completed. The visible appearance of the tubing under ex vivo samples and the in vivo vasculature gradually enhanced over time. The LSCI increased as a function of time after the application of the PCTOC in both ex vivo and in vivo experiments, and properly recovered to initial conditions after the application of saline in the in vivo experiment. The LSCI combined with the PCTOC was greatly enhanced even in deep vasculature. It is expected that similar results will be obtained in in vivo human studies.

A Perceived Contrast Compensation Method Adaptive to Surround Luminance Variation for Mobile Phones

  • Yang, Cheng;Zhang, Jianqi;Zhao, Xiaoming
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.809-817
    • /
    • 2014
  • The loss in contrast-discrimination ability of the human visual system under high ambient illumination level can cause image quality degradation in mobile phones. In this paper, we propose a perceived contrast compensation method by processing the original displayed image. With consideration that the perceived contrast significantly varies across the image, this method extracts the local band contrast from the original image; it then compensates these contrast components to counteract the perceived contrast degradation. Experimental results demonstrate that this method can maintain most contrast details even in high ambient illumination levels.

Nanoparticle Contrast in Magneto-Motive Optical Doppler Tomography

  • Kim, Jee-Hyun;Oh, Jung-Hwan
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.99-104
    • /
    • 2006
  • We introduce a novel contrast mechanism for imaging superparamagnetic iron oxide (SPIO) nanoparticles (average diameter ${\sim}100nm$) using magneto-motive optical Doppler tomography (MM-ODT), which combines an externally applied temporally oscillating high-strength magnetic field with ODT to detect the nanoparticles flowing through a glass capillary tube. A solenoid cone-shaped ferrite core extensively increased the magnetic field strength ($B_{max}=1\;T,\;{\Delta}|B|^2=220T^2/m$) at the tip of the core and also focused the magnetic force on targeted samples. Nanoparticle contrast was demonstrated in a capillary tube filled with the SPIO solution by imaging the Doppler frequency shift which was observed independent of the flow rate and direction. Results suggest that MM-ODT may be a promising technique to enhance SPIO nanoparticle contrast for imaging fluid flow.

Phase Contrast Projection Display Using Photopolymer

  • Piao, Mei-Lan;Kim, Nam;Park, Jae-Hyeung
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.319-325
    • /
    • 2008
  • We propose a phase contrast filter using photopolymer, for the phase contrast projection display. The photopolymer has high photosensitivity such that its optically induced refractive index change has a linear dependency on the illuminating light intensity. We implemented a phase contrast projection display using photopolymer as a phase contrast filter. By controlling the refractive index change of the photopolymer, we successfully convert an input phase image into a high contrast intensity image. We also investigated the effect of the photopolymer illumination condition on the quality of the displayed intensity image. As a projector, we achieved 82% phase to intensity conversion efficiency, which implies that the proposed method can potentially have much higher light efficiency than conventional projection display.