DOI QR코드

DOI QR Code

Common-path Optical Interferometry for Stabilized Dynamic Contrast Imaging: A Feasibility Study

  • Seung-Jin, Lee (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Young-Wan, Choi (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Woo June, Choi (School of Electrical and Electronics Engineering, Chung-Ang University)
  • Received : 2022.08.08
  • Accepted : 2022.12.13
  • Published : 2023.02.25

Abstract

The motion of organelles inside a cell is an important intrinsic indicator for assessing cell physiology and tissue viability. Dynamic contrast full-field optical coherence tomography (D-FFOCT) is a promising imaging technology that can visualize intracellular movements using the variance of temporal interference signals caused by biological motions. However, double-path interferometry in D-FFOCT can be highly vulnerable to surrounding noise, which may cause turbulence in the interference signals, contaminating the sample dynamics. Therefore, we propose a method for stabilized D-FFOCT imaging in noisy environments by using common-path interferometry in D-FFOCT. A comparative study shows that D-FFOCT with the proposed method achieves stable dynamic contrast imaging of a scattering phantom in motion that is over tenfold more noise-insensitive compared to the conventional one, and thus this imaging capability can provide cleaner motion contrast images. With the proposed approach, the intracellular dynamics of biological samples are imaged and monitored.

Keywords

Acknowledgement

Supported in part by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1A5A1018052); Chung-Ang University Research Scholarship Grants in 2021.

References

  1. B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 4th ed. (Garland Science, NY, USA, 2002).
  2. K. Henzler-Wildman and D. Kern, "Dynamic personalities of proteins," Nature 450, 964-972 (2007). https://doi.org/10.1038/nature06522
  3. A. R. Pries, T. W. Secomb, and P. Gaehtgens, "Biophysical aspects of blood flow in the microvasculature," Cardiovasc. Res. 32, 654-667 (1996). https://doi.org/10.1016/S0008-6363(96)00065-X
  4. W. J. Choi, J.-K. Yoon, B. Paulson, C.-H. Lee, J.-J. Yim, J.-I. Kim, and J. K. Kim, "Image correlation-based method to assess ciliary beat frequency in human airway organoids," IEEE Trans. Med. Imaging 41, 374-382 (2022). https://doi.org/10.1109/TMI.2021.3112992
  5. J. Liy, Z. Ye, X. Wang, L. Wei, and L. Xiao, "Molecular and living cell dynamic assays with optical microscopy imaging techniques," Analyst 144, 859-871 (2019). https://doi.org/10.1039/c8an01420e
  6. S. L. Reck-Peterson, N. D. Derr, and N. Stuurman, "Imaging single molecules using total internal reflection fluorescence microscopy (TIRFM)," Cold Spring Harb. Protoc. 2010, psdb. top73 (2010).
  7. P. F. Gao, G. Lei, and C. Z. Huang, "Dark-field microscopy: Recent advances in accurate analysis and emerging applications," Anal. Chem. 93, 4707-4726 (2021). https://doi.org/10.1021/acs.analchem.0c04390
  8. W. Wei, P. Tang, Z. Xie, Y. Li, and R. K.Wang, "Dynamic imaging and quantification of subcellular motion with eigendecomposition optical coherence tomography-based variance analysis," J. Biophotonics 12, e201900076 (2019).
  9. S. B. Ploner, E. M. Moult, W. Choi, N. K. Waheed, B. Lee, E. A. Novais, E. D. Cole, B. Potsaid, L. Husvogt, J. Schottenhamml, A. Maier, P. J. Rosenfeld, J. S. Duker, J. Hornegger, and J. G. Fujimoto, "Toward quantitative optical coherence tomography angiography: Visualizing blood flow speeds in ocular pathology using variable interscan time analysis," Retina 36, 118-126 (2016).
  10. H. M. Leung, M. L. Wang, H. Osman, E. Abouei, C. MacAulay, M. Follen, J. A. Gardecki, and G. J. Tearney, "Imaging intracellular motion with dynamic micro-optical coherence tomography," Biomed. Opt. Express 11, 2768-2778 (2020). https://doi.org/10.1364/boe.390782
  11. J. Scholler, K. Groux, O. Goureau, J. A. Sahel, M. Fink, S. Reichman, C. Boccara, and K. Grieve, "Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids," Light Sci. Appl. 9, 140 (2020).
  12. C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, "Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis," Biomed. Opt. Express 7, 1511-1524 (2016). https://doi.org/10.1364/BOE.7.001511
  13. K. Groux, A. Verschueren, C. Nanteau, M. Clemencon, M. Fink, J.-A. Sahel, C. Boccara, M. Paques, S. Reichman, and K. Grieve, "Dynamic full-field optical coherence tomography allows live imaging of retinal pigment epithelium stress model," Commun. Biol. 5, 575 (2022).
  14. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, "High-resolution full-field optical coherence tomography with a Linnik microscope," Appl. Opt. 41, 805-812 (2002). https://doi.org/10.1364/AO.41.000805
  15. E.-S. Kim and W.-J. Choi, "In situ metrology for pad surface monitoring in CMP using a common-path phase-shifting interferometry: A feasibility study," Appl. Sci. 11, 6839 (2021).
  16. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Opt. 42, 6953-6958 (2003). https://doi.org/10.1364/AO.42.006953
  17. T. Anna, V. Srivastava, D. S. Mehta, and C. Shakher, "Highresolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cells," Appl. Opt. 50, 6343-6351 (2011). https://doi.org/10.1364/AO.50.006343
  18. V. Srivastava, T. Anna, and D. S. Metha, "Full-field Hilbert phased microscopy using nearly common-path interferometry for quantitative imaging of biological cells," J. Opt. 14, 125707 (2012).
  19. S.-H. Lu, C.-J. Chang, and C.-F. Kao, "Full-field optical coherence tomography using immersion Mirau interference microscope," Appl. Opt. 52, 4400-4403 (2013). https://doi.org/10.1364/AO.52.004400
  20. A. Dubois, W. Xue, O. Levecq, P. Bulkin, A.-L. Coutrot, and J. Ogien, "Mirau-based line-field confocal optical coherence tomography," Opt. Express 28, 7918-7927 (2020). https://doi.org/10.1364/oe.389637
  21. P. Vesely, S. J. Jones, and A. Boyde, "Video-rate confocal reflection microscopy of neoplastic cells: rate of intracellular movement and peripheral motility characteristic of neoplastic cell line (RSK4) with high degree of growth independence," Scanning 15, 43-47 (1993). https://doi.org/10.1002/sca.4950150107
  22. M. R. Sayang and E. H. Dowell, "Nonlinear structural, inertial and damping effects in an oscillating cantilever beam," in Nonlinear Dynamics (Springer, Swiss, 2019), Volume 1, pp. 387-400.
  23. S. F. Soriano, M. Hons, K. Schumann, V. Kumar, T. J. Dennier, R. Lyck, M. Sixt, and J. V. Stein, "In vivo analysis of uropod function during physiological T cell trafficking," J. Immunol. 187, 2356-2364 (2011). https://doi.org/10.4049/jimmunol.1100935
  24. L. E. Hind, W. J. B. Vincent, and A. Huttenlocher, "Leading from the back: The role of the uropod in neutrophil polarization and migration," Dev. Cell 38, 161-169 (2016). https://doi.org/10.1016/j.devcel.2016.06.031
  25. S.-Y. Yoon, K.-T. Kim, S. J. Jo, A.-R. Cho, S.-I. Jeon, H.-D. Choi, K. H. Kim, G.-S. Park, J.-K. Pack, O. S. Kwon, and W.-Y. Park, "Induction of hair growth by insulin-like growth factor-1 in 1,763 MHz radiofrequency-irradiated hair follicle cells," PLoS One 6, e28474 (2011).
  26. K. Katsuoka, H. Schell, B. Wessel, and O. P. Hornstein, "Effects of epidermal growth factor, fibroblast growth factor, minoxidil and hydrocortisone on growth kinetics in human hair bulb papilla cells and root sheath fibroblasts cultured," Arch. Dermatol. Res. 279, 247-250 (1987). https://doi.org/10.1007/BF00417323
  27. C. G. Gho, J. E. F. Braun, C. M. L. J. Tilli, H. A. M. Neumann, and F. C. S. Ramaekers, "Human follicular stem cells: Their presence in plucked hair and follicular cell culture," Br. J. Dermatol. 150, 860-868 (2004). https://doi.org/10.1111/j.1365-2133.2004.05862.x
  28. A. Latrive and A. C. Boccara, "In vivo and in situ cellular imaging full-field optical coherence tomography with a rigid endoscopic probe," Biomed. Opt. Express 2, 2897-2904 (2011). https://doi.org/10.1364/BOE.2.002897
  29. H. D. Ford and R. P. Tatam, "Fibre imaging bundles for full-field optical coherence tomography," Meas. Sci. Technol. 18, 2949 (2007).