• 제목/요약/키워드: Optical angle sensor

Search Result 118, Processing Time 0.026 seconds

AN OPTICAL FIBER FEED LITTROW-MOUNTED SPECTROMETER (광섬유 피드 리트로마운트형 분광계)

  • Bae, J.H.;Song, J.W.;Yoon, T.S.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.87-93
    • /
    • 2012
  • A low-dispersion fiber feed Littrow-mounted grating spectrometer for education was designed and fabricated. The dispersion element is a reflective type blazed grating Edmundoptics NT 46-075 (spatial frequency 600 lines/mm, dimension $30mm{\times}30mm$, blazed angle 8.6 degree). The optical fiber coupler module for optical guiding from telescope to spectrometer is composed of a multi-mode FC connector - FC connector optical fiber patch cord (core/cladding diameter $50{\mu}m/125{\mu}m$) and two 1.25" throw-tube couplers. The lens for collimating and imaging is a general purpose focal length 50 mm camera lens (f/1.8). The device for optical path control is a rectangular prism (size $25mm{\times}25mm$). The imaging camera sensor is a Meade DSI Pro 2 CCD sensor (black and white, $752{\times}582$ pixels and pixel size $8.3{\mu}m{\times}8.6{\mu}m$). Softwares for data logging and analysis consist of Meade Autostar Suite, NIH imagej and Vernier Logger Pro 3. The wavelength coverage range of the spectrometer is 205 nm at central wavelength 550 nm. The wavelength resolution is 1.7 nm.

Analytic Formulation of Transmission Light Intensity of Hole Blockers in Intensity-based Polymer Optical Fiber Sensors

  • Kwon, Il-Bum;Kim, Chi-Yeop;Shim, Chan-Wook;Hwang, Du-Sun;Chung, Yung-Joo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.221-225
    • /
    • 2011
  • Intensity-based optical fiber sensors are devised using a blocker which is located between two polymer optical fibers(POFs), one fiber is light-in and the other is light-out. This blocker is moved by an external displacement. Therefore, finding a general formulation of the relation between this displacement and transmission light intensity of various blockers is important to help develop intensity-based optical fiber sensors. In this paper, we consider blockers with arbitrary shapes from circular holes to inclined angled blockers. The transmission light intensities of such blockers should be determined by this generalized equation. In order to verify this equation, the calculated intensities of the blockers are compared with the values acquired from experiment. In the comparison, it is shown that the analytic equation can give the exact values of the transmitted light intensities for the assorted blockers. The range of the displacement measurement is also shown to be about 6 times of the radius of the hole in the case of a 9 degree inclined angle blocker.

The Developement of Small 360° Oral Scanner Lens Module (소형 360° 구강 스캐너 렌즈 모듈 개발)

  • Kwak, Dong-Hoon;Lee, Sun-Gu;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.858-861
    • /
    • 2018
  • In this paper, we propose the development of a small $360^{\circ}$ oral scanner lens module. The proposed small $360^{\circ}$ oral scanner lens module consists of a small $360^{\circ}$ high resolution(4MegaPixel) lens optical system, a 15mm image sensor unit, and a small $360^{\circ}$ mouth scanner lens external shape. A small $360^{\circ}$ high resolution lens optical system produces a total of nine lenses, the outer diameter of the lens not less than 15mm for use by children through the ages of adulthood. Light drawn by a small $360^{\circ}$ high resolution lens optical system is $90^{\circ}$ flexion so that image images are delivered to image sensors. The 15mm image sensor unit sends the converted value to the ISP(Image Signal Processor) of the embedded board after an image array through the column and the row address of the image sensor. The small $360^{\circ}$ mouth scanner lens outer shape was designed to fix the race to the developed lens. Results from authorized testing agencies to assess the performance of proposed small $360^{\circ}$ oral scanner lens modules, The optical resolving power of $360^{\circ}$ lens was more than 30% at 150 cycles/mm, $360^{\circ}$ lens angle was $360^{\circ}$ in vertical direction, $42^{\circ}{\sim}85^{\circ}$ in vertical direction, and lens distortion rate was 5% or less. It produced the same result as the world's highest level.

Image Analysis for the Simultaneous Measurement of Underwater Flow Velocity and Direction (수중 유속 및 유향의 동시 측정을 위한 이미지 분석 기술에 관한 연구)

  • Dongmin Seo;Sangwoo Oh;Sung-Hoon Byun
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.307-312
    • /
    • 2023
  • To measure the flow velocity and direction in the near field of an unmanned underwater vehicle, an optical measurement unit containing an image sensor and a phosphor-integrated pillar that mimics the neuromasts of a fish was constructed. To analyze pillar movement, which changes with fluid flow, fluorescence image analysis was conducted. To analyze the flow velocity, mean force analysis, which could determine the relationship between the light intensity of a fluorescence image and an external force, and length-force analysis, which could determine the distance between the center points of two fluorescence images, were employed. Additionally, angle analysis that can determine the angles at which pixels of a digital image change was selected to analyze the direction of fluid flow. The flow velocity analysis results showed a high correlation of 0.977 between the external force and the light intensity of the fluorescence image, and in the case of direction analysis, omnidirectional movement could be analyzed. Through this study, we confirmed the effectiveness of optical flow sensors equipped with phosphor-integrated pillars.

Comparison between Two Coordinate Transformation-Based Orientation Alignment Methods (좌표변환 기반의 두 자세 정렬 기법 비교)

  • Lee, Jung-Keun;Jung, Woo-Chang
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.30-35
    • /
    • 2019
  • Inertial measurement units (IMUs) are widely used for wearable motion-capturing systems in the fields of biomechanics and robotics. When the IMUs are combined with optical motion sensors (hereafter, OPTs) for their complementary capabilities, it is necessary to align the coordinate system orientations between the IMU and OPT. In this study, we compare the application of two coordinate transformation-based orientation alignment methods between two coordinate systems. The first method (M1) applies angular velocity coordinate transformation, while the other method (M2) applies gyroscopic angle coordinate transformation. In M1 and M2, the angular velocities and angles, respectively, are acquired during random movement for a least-square algorithm to determine the alignment matrix between the two coordinate systems. The performance of each method is evaluated under various conditions according to the type of motion during measurement, number of data points, amount of noise, and the alignment matrix. The results show that M1 is free from drift errors, while drift errors are present in most cases where M2 is applied. Thus, this study indicates that M1 has a far superior performance than M2 for the alignment of IMU and OPT coordinate systems for motion analysis.

A SHIPBOARD MULTISENSOR SOLUTION FOR THE DETECTON OF FAST MOVING SMALL SURFACE OBJECTS

  • Ko, Hanseok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.174-177
    • /
    • 1995
  • Detecting a small threat object either fast moving or floating on shallow water presents a formidable challenge to shipboard sensor systems, which must determine whether or not to launch defensive weapons in a timely manner. An integrated multisensor concept is envisioned wherein the combined use of active and passive sensor is employed for the detection of short duration targets in dense ocean surface clutter to maximize detection range. The objective is to develop multisensor integration techniques that operate on detection data prior to track formation while simultaneously fusing contacts to tracks. In the system concept, detections from a low grazing angle search radar render designations to a sensor-search infrared sensor for target classification which in turn designates an active electro-optical sensor for sector search and target verification.

  • PDF

Display Technologies for Immersive Devices and Electronic Skin (디스플레이 현황과 발전방향 -실감 및 스킨 기기로의 확대)

  • Park, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.10-18
    • /
    • 2019
  • Since the introduction of CRT(Cathode Ray Tube) in the 1950s, display technologies have been developed continuously. Flat panel displays such as PDP(Plasma Display Panel) and LCD(Liquid Crystal Display) were commercialized in the late 1990s, and OLED(Organic Light Emitting Diodes) and Micro-LED(Micro-Light Emitting Diodes) are now being developed and are becoming widespread. In the future, we expect to develop ultra-realistic, flexible, embedded sensor displays. Ultra-realistic display can be applied to AR/VR(Augmented Reality/Virtual Reality) devices and spatial light modulators for holography. The sensor-embedded display can be applied to robots; electronic skin; and security devices, including iris recognition sensors, fingerprint recognition sensors, and tactile sensors. AR/VR technology must be developed to meet technical requirements such as viewing angle, resolution, and refresh rate. Holography requires optical modulation technology that can significantly improve resolution, viewing angle, and modulation method to enable wide-view and high-quality hologram stereoscopic images. For electronic skin, stable mass production technology, large-area arrays, and system integration technologies should be developed.

Study of the Dependence of the Electric Potential on Surface Plasmon Resonance Characteristics (금속 표면의 전위가 표면 플라즈몬 공명 특성에 미치는 영향에 대한 연구)

  • Jeong, Intae;Kwon, Jooseong;Park, Young June
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • When voltage is applied on the metal layer of a surface plasmon resonance (SPR) sensor, electric field excitation causes charge accumulation on the metal surface. This alters not only the optical properties of the metal but also the SPR angle. In this study we investigate this effectby performing experiments using solutions of various pH values, and we obtain the relation between total surface charge and SPR angle. The curves for the various pH conditions become coincident. We compare our results to those from an earlier space charge layer (SCL) model, and suggest a modified SCL model which explains our result well. This result will be useful in applications of SPR sensors, and in studying the optical properties of thin metal layers.

The Study of the Optical Fiber Current Sensor Using Faraday Effect (Faraday 효과를 이용한 광섬유 전류센서에 관한 연구)

  • 이정수;송시준;전재일;박원주;이광식;김정배;송원표
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.229-232
    • /
    • 2002
  • In this paper, we described the laboratory layout of the optical CT in connection with the measurement of large current for the GIS. The aim of this study is the development and application of optical CT based on Faraday effect. It was used He-Ne laser for light source (633nm) and was used PIN-Photodiode for light receiver. The laser source passes through optical fiber in single mode. We used the polarizer to polarize the light source and the beam splitter to divide the output light, and the optical fiber is connected for the measuring the angle polarized in the magnetic field.

  • PDF

Kalman Filter for Estimation of Sensor Acceleration Using Six-axis Inertial Sensor (6축 관성센서를 이용한 센서가속도 추정용 칼만필터)

  • Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.179-185
    • /
    • 2015
  • Although an accelerometer is a sensor that measures acceleration, it cannot be used by itself to measure the acceleration when the orientation of the sensor changes. This paper introduces a Kalman filter for the estimation of a sensor acceleration based on a six-axis inertial sensor (i.e., a three-axis accelerometer and three-axis gyroscope). The novelty of the proposed Kalman filter lies in the fact that its state vector includes not only the tilt angle variable but also the sensor acceleration. Thus, the filter can explicitly estimate the latter with a high accuracy. The accuracy of acceleration estimates were validated experimentally under three different dynamic conditions, using an optical motion capture system. It could be concluded that the performance of the proposed Kalman filter was comparable to that of the state-of-the-art estimation algorithm employed by the Xsens MTw. The proposed algorithm may be more suitable than inertial/magnetic sensor-based algorithms for various applications adopting six-axis inertial sensors.