Study of the Dependence of the Electric Potential on Surface Plasmon Resonance Characteristics

금속 표면의 전위가 표면 플라즈몬 공명 특성에 미치는 영향에 대한 연구

  • Jeong, Intae (Department of Transdisciplinary, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Kwon, Jooseong (Department of Electrical and Computer Engineering, School of Engineering, Seoul National University) ;
  • Park, Young June (Department of Transdisciplinary, Graduate School of Convergence Science and Technology, Seoul National University)
  • 정인태 (서울대학교 융합과학기술대학교 융합과학부 나노융합전공) ;
  • 권주성 (서울대학교 공과대학 전기정보공학부) ;
  • 박영준 (서울대학교 융합과학기술대학교 융합과학부 나노융합전공)
  • Received : 2014.01.06
  • Accepted : 2014.02.10
  • Published : 2014.04.25


When voltage is applied on the metal layer of a surface plasmon resonance (SPR) sensor, electric field excitation causes charge accumulation on the metal surface. This alters not only the optical properties of the metal but also the SPR angle. In this study we investigate this effectby performing experiments using solutions of various pH values, and we obtain the relation between total surface charge and SPR angle. The curves for the various pH conditions become coincident. We compare our results to those from an earlier space charge layer (SCL) model, and suggest a modified SCL model which explains our result well. This result will be useful in applications of SPR sensors, and in studying the optical properties of thin metal layers.

표면 플라즈몬 공명 (SPR) 센서에서 금속 전극에 전압을 걸었을 경우, 표면에 여기 되는 전기장에 의해 전하가 쌓이게 된다. 이는 금속 표면의 광학적 성질과 표면 플라즈몬 공명 각도의 변화를 야기시킨다. 본 논문에서는 그에 대한 검증을 위해 다양한 산도 조건의 수용액 하에서 금속에 전압을 걸었을 때의SPR 각도 변화를 측정하였고, 누적 전하량과 공명 각도에 대한 의존성을 그렸을 때 수용액의 산도에 관계없이 일치함을 확인 하였다. 이 관계를 설명하는 기존의 공간전하층(SCL) 모델과 비교해보고 실험결과와 어긋나는 부분과도 잘 맞는 수정된 SCL 모델을 제시하였다. 이 결과는 표면 플라즈몬 공명 센서의 응용과 금속박막의 광학적 성질에 대한 연구에 기여할 거라 기대된다.



  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nat. 424, 824-830 (2005).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science+Business Media LLC, Spring Street NY, USA, 2007).
  3. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: Review," Sens. Actuators B 54, 3-15 (1999).
  4. Y. Ryu, T. Son, and D. Kim, "Near-field evaluation of surface plasmon resonance biosensor sensitivity," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 24, 86-91 (2013).
  5. J. E. Garland, K. A. Assionbon, C. M. Pettit, and D. Roy, "Surface plasmon resonance transients at an electrochemical interface: Time resolved measurements using a bicell photodiode," Anal. Chim. Acta 475, 47-58 (2003).
  6. V. Lioubimov, A. Kolomenskii, A. Mershin, D. V. Nanopoulos, and H. A. Schuessler, "Effect of varying electric potential on surface-plasmon resonance sensing," Appl. Opt. 43, 3426-3432 (2004).
  7. A. M. Lopatynskyi, O. G. Lopatynska, M. D. Guiver, L. V. Poperenko, and V. I. Chegel, "Factor of interfacial potential for the surface plasmon-polariton resonance sensor response," Semicon. Phys. Quant. Electron. & Opt. 11, 329-336 (2008).
  8. J. D. E. McIntyre, "Electrochemical modulation spectroscopy," Surf. Sci. 37 658-682 (2004).
  9. B. E. Conway, V. Birss, and J. Wojtowicz, "The role and utilization of pseudocapacitance for energy storage by supercapacitors," Journal of Power Sources 66, 1-14 (1997).
  10. MiCoBioMed, AMiCo Company, http://www.micobiomed. com/html/SPR_principle.php.
  11. Samchun Chemical Company,
  12. L. M. Brekhovskikh, Waves in Layered Media, 2nd ed. (Academic Press, NY, USA, 1980).