• Title/Summary/Keyword: Optical and structural properties

Search Result 936, Processing Time 0.03 seconds

Zinc Oxide Nanostructured Thin Film as an Efficient Photoanode for Photoelectrochemical Water Oxidation

  • Park, Jong-Hyun;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.441-446
    • /
    • 2020
  • Synthesizing nanostructured thin films of oxide semiconductors is a promising approach to fabricate highly efficient photoelectrodes for hydrogen production via photoelectrochemical (PEC) water splitting. In this work, we investigate the feasibility as an efficient photoanode for PEC water oxidation of zinc oxide (ZnO) nanostructured thin films synthesized via a simple method combined with sputtering Zn metallic films on a fluorine-doped tin oxide (FTO) coated glass substrate and subsequent thermal oxidation of the sputtered Zn metallic films in dry air. Characterization of the structural, optical, and PEC properties of the ZnO nanostructured thin film synthesized at varying Zn sputtering powers reveals that we can obtain an optimum ZnO nanostructured thin film as PEC photoanode at a sputtering power of 40 W. The photocurrent density and optimal photocurrent conversion efficiency for the optimum ZnO nanostructured thin film photoanode are found to be 0.1 mA/㎠ and 0.51 %, respectively, at a potential of 0.72 V vs. RHE. Our results illustrate that the ZnO nanostructured thin film has promising potential as an efficient photoanode for PEC water splitting.

Structural and optical properties of $TiO_2$ thin film fabricated by reactive sputtering (반응성 스퍼터링법에 의한 $TiO_2$ 박막의 구조적 및 광학적 특성)

  • Yang, Hyeon-Hun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.58-61
    • /
    • 2008
  • $TiO_2$ is a wide band-gap semiconductor (3.4 eV) and can only absorb about 5% of sun light in the ultraviolet light region, which largely limits its practical applications because of the lower utility of sun light and quantum yield. In order to move the absorption edge of $TiO_2$ fims to visible spectrum range, we have made the impurity level within a band-gap of $TiO_2$ thin film by introduction of oxygen vacancy. Oxygen-defected $TiO_2$ thin film have prepared by reactive sputtering with the partial pressure of $Ar:O_2=10:90{\sim}99.33:0.66$ ratio. As a result, we could have the impurity level of about 2.75 eV on condition that oxygen partial pressure is below 7%.

  • PDF

Effect of Sputtering Conditions for CdTe Thin Films on CdTe/CdS Solar Cell Characteristics (스퍼터링에 의한 CdTe 박막 제조 조건이 CdTe/CdS 태양전지의 특성에 미치는 영향)

  • Jung, Hae-Won;Lee, Cheon;Shin, Jae-Heyg;Shin, Sung-Ho;Park, Kwang-Ja
    • Electrical & Electronic Materials
    • /
    • v.10 no.9
    • /
    • pp.930-937
    • /
    • 1997
  • Polycrystalline CdTe thin films have been studied for photovoltaic application because of their high absorption coefficient and optimal band energy(1.45 eV) for solar energy conversion. In this study CdTe thin films were deposited on CdS(chemical bath deposition)/ITO(indium tin oxide) substrate by rf-magnetron sputtering under various conditions. Structural optical and electrical properties are investigated with XRD UV-Visible spectrophotometer SEM and solar simulator respectively. The fabricated CdTe/CdS solar cell exhibited open circuit voltage( $V_{oc}$ ) of 610 mV short circuit current density( $J_{sc}$ ) of 17.2 mA/c $m^2$and conversion efficiency of about 5% at optimal sputtering conditions.

  • PDF

Fabrication of Organic Thin Films by Pulsed Laser Deposition (펄스 레이저 증착법을 이용한 유기 박막의 제작)

  • Park, Sang-Moo;Lee, Boong-Joo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.455-460
    • /
    • 2008
  • In recent years, there has been highly interestedin pulsed laser deposition (PLD) method for fabrication of the organic thin films, as an alternative to conventional fabrication method such as vacuum evaporation and spin coating techniques. In this study, organic thin films of $Alq_3$ (aluminato-tris-8-hydroxyquinolate) and TPD for organic light emitting diodes (OLED) were deposited by PLD using KrF excimer ($\lambda$=278 nm) laser in nitrogen atmosphere. Deposited films were evaluated by photoluminescence(PL), Fourier-transform Infrared Spectroscopy (FT-IR) to study the effect of the laser and $N_2$ atmosphere parameters on the structural and optical properties.

Structural and optical properties of $TiO_2$ thin film fabricated by reactive sputtering (반응성 스퍼터링법에 의한 $TiO_2$ 박막의 구조적 및 광학적 특성)

  • Jeong, Woon-Jo;Yang, Hyeon-Hun;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.393-394
    • /
    • 2008
  • $TiO_2$ is a wide band-gap semiconductor (3.4 eV) and can only absorb about 5% of sun light in the ultraviolet light region, which largely limits its practical applications because of the lower utility of sun light and quantum yield. In order to move the absorption edge of $TiO_2$ films to visible spectrum range, we have made the impurity level within a band-gap of $TiO_2$ thin film by introduction of oxygen vacancy. Oxygen-defected $TiO_2$ thin film have prepared by reactive sputtering with the partial pressure of Ar:$O_2$=10:90~99.33:0.66 ratio. As a result, we could have the impurity level of about 2.75 eV on condition that oxygen partial pressure is below 7%.

  • PDF

Photocatalytic degradation and antibacterial investigation of nano synthesized Ag3VO4 particles @PAN nanofibers

  • Saud, Prem Singh;Ghouri, Zafar Khan;Pant, Bishweshwar;An, Taehee;Lee, Joong Hee;Park, Mira;Kim, Hak-Yong
    • Carbon letters
    • /
    • v.18
    • /
    • pp.30-36
    • /
    • 2016
  • Well-dispersed Ag3VO4 nanoparticles @polyacrylonitrile (PAN) nanofibers were synthesized by an easily controlled, template-free method as a photo-catalyst for the degradation of methylene blue. Their structural, optical, and photocatalytic properties have been studied by X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy equipped with rapid energy dispersive analysis of X-ray, photoluminescence, and ultraviolet-visible spectroscopy. The characterization procedures revealed that the obtained material is PAN nanofibers decorated by Ag3VO4 nanoparticles. Photocatalytic degradation of methylene blue investigated in an aqueous solution under irradiation showed 99% degradation of the dye within 75 min. Finally, the antibacterial performance of Ag3VO4 nanoparticles @PAN composite nanofibers was experimentally verified by the destruction of Escherichia coli. These results suggest that the developed inexpensive and functional nanomaterials can serve as a non-precious catalyst for environmental applications.

Structural and optical properties of $TiO_2$ thin film fabricated by reactive sputtering (반응성 스퍼터링법으로 제조된 $TiO_2$ 박막의 구조적 및 광학적 특성)

  • Jeong, Woon-Jo;Yang, Sung-Eun;Yang, Hyeon-Hun;Kim, Young-Jun;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.398-399
    • /
    • 2006
  • $TiO_2$ is a wide band-gap semiconductor (3.4 eV) and can only absorb about 5% of sun light. in the ultraviolet light region, which largely limits its practical applications because of the lower utility of sun light and quantum yield. In order to move the absorption edge of $TiO_2$ films to visible spectrum range, we have made the impurity level within a band-gap of $TiO_2$ thin film by introduction of oxygen vacancy. Oxygen-defected $TiO_2$ thin film have prepared by reactive sputtering with the partial pressure of Ar:$O_2$=10:90~99.33:0.66 ratio. As a result, we could have the impurity level of about 2.75 eV on condition that oxygen partial pressure is below 7%.

  • PDF

ZnO Nanorod Array as an Efficient Photoanode for Photoelectrochemical Water Oxidation (광전기화학적 물 산화용 산화아연 나노막대 광양극의 합성 및 특성평가)

  • Park, Jong-Hyun;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.239-245
    • /
    • 2020
  • Synthesizing one-dimensional nanostructures of oxide semiconductors is a promising approach to fabricate highefficiency photoelectrodes for hydrogen production from photoelectrochemical (PEC) water splitting. In this work, vertically aligned zinc oxide (ZnO) nanorod arrays are successfully synthesized on fluorine-doped-tin-oxide (FTO) coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal thin film. The structural, optical and PEC properties of the ZnO nanorod arrays synthesized at varying levels of Zn sputtering power are examined to reveal that the optimum ZnO nanorod array can be obtained at a sputtering power of 20 W. The photocurrent density and the optimal photocurrent conversion efficiency obtained for the optimum ZnO nanorod array photoanode are 0.13 mA/㎠ and 0.49 %, respectively, at a potential of 0.85 V vs. RHE. These results provide a promising avenue to fabricating earth-abundant ZnO-based photoanodes for PEC water oxidation using facile hydrothermal synthesis.

Development of a New Double Buffer Layer for Cu(In, Ga) $Se_2$ Solar Cells

  • Larina, Liudmila;Kim, Ki-Hwan;Yoon, Kyung-Hoon;Ahn, Byung-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.152-153
    • /
    • 2006
  • The new approach to buffer layer design for CIGS solar cells that permitted to reduce the buffer absorption losses in the short wavelength range and to overcome the disadvantages inherent to Cd-free CIGS solar cells was proposed. A chemical bath deposition method has been used to produce a high duality buffer layer that comprises thin film of CdS and Zn-based film. The double layer was grown on either ITO or CIGS substrates and its morphological, structural and optical properties were characterized. The Zn-based film was described as the ternary compound $ZnS_x(OH)_y$. The composition of the $ZnS_x(OH)_y$ layer was not uniform throughout its thickness. $ZnS_x(OH)_y$/CdS/substrate region was a highly intermixed region with gradually changing composition. The short wavelength cut-off of double layer was shifted to shorter wavelength (400nm) compared to that (520 nm) for the standard CdS by optimization of the double buffer design. The results show the way to improve the light energy collection efficiency of the nearly cadmium-free CIGS-based solar cells.

  • PDF

Structures and Magnetic Properties of Monomeric Copper(II) Bromide Complexes with a Pyridine-Containing Tridentate Schiff Base

  • Kang, Sung Kwon;Yong, Soon Jung;Song, Young-Kwang;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3615-3620
    • /
    • 2013
  • Two novel copper(II) bromide complexes with pyridine containing Schiff base ligands, $Cu(pmed)Br_2$ and $Cu(pmed)Br_2$ where pmed = N'-((pyridin-2-yl)methylene)ethane-1,2-diamine (pmed) and dpmed = N,N-diethyl-N'-((pyridin-2-yl)methylene)ethane-1,2-diamine (dpmed) were synthesized and characterized using X-ray single crystal structure analysis, optical and magnetic susceptibility measurements. Crystal structural analysis of $Cu(pmed)Br_2$ showed that the copper(II) ion has a distorted square-pyramidal geometry with the trigonality index of ${\tau}=0.35$ and two intermolecular hydrogen bonds, which result in the formation of two dimensional networks in the ab plane. On the other hand, $Cu(pmed)Br_2$ displayed a near square-pyramidal geometry with the value of ${\tau}=0.06$. In both compounds, the NNN Schiff base and one Br atom occupy the basal plane, whereas the fifth apical position is occupied by the other Br atom at a greater Cu-Br apical distance. The reported complexes show $g_{\mid}$ > $g_{\perp}$ > 2.0023 with a $d_{x2-y2}$ ground state and a penta-coordinated square pyramidal geometry. Variable temperature magnetic susceptibility measurements showed that the developed copper(II) complexes follow the Curie-Weiss law, that is there are no magnetic interactions between the copper(II) ions since the Cu--Cu distance is too far for magnetic contact.