• Title/Summary/Keyword: Optical and electrical properties

Search Result 2,227, Processing Time 0.029 seconds

Effects of the substrate temperature on the properties of Al doped ZnO films (Al doped ZnO 박막 특성에 미치는 증착 온도의 영향)

  • Kim, Yong-Hyun;Seong, Tae-Yeon;Kim, Won-Mok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.82-83
    • /
    • 2008
  • AI doped ZnO (AZO) films, and intentionally Zn added AZO (ZAZO) films were prepared on Corning glass by rf magnetron sputtering, and the electrical, optical, and structural properties of the as-deposited films together with the air annealed films were investigated. The resistivity of the AZO films increased with increasing substrate temperature and having minimum resistivity at $150^{\circ}C$. At the high temperature, the ZAZO films showed improved electrical properties better than the AZO films due.to increase in both the carrier concentration and.the Hall mobility. Upon air annealing at $500^{\circ}C$, the resistivity of both AZO and ZAZO films increased substantially, but the relative amount of degradation was smaller for films deposited at $450^{\circ}C$ than the films deposited at $150^{\circ}C$.

  • PDF

The effect of deposition condition on the oxidation of TbFeCo thin films in facing targets sputtering system (Facing targets sputtering system에서 TbFeCo박막의 산화에 미치는 제조조건의 영향)

  • 문정탁;김명한
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.511-519
    • /
    • 1994
  • The effect of the deposition conditions, such as the base pressure, working pressure, sputtering power, pre-sputtering, and deposition thickness in facing targets sputtering system(FTS), on the oxidation of the TbFeCo thin films was studied by investigating the magneto-optical properties as well as oxygen analysis by the AES depth profiles. The results showed that the base pressure did not affect the magnetic properties so much, probably due to the short flight distance of the sputtered particles. At the higher sputtering power and lower working pressure with pre-sputtering the oxidation of TbFeCo thin films was decreased. As the film thickness increased the TbFeCo thin films showed the perpendicular anisotropy from in-plane anisotropy overcoming the oxidation effect at the beginning of the sputtering.

  • PDF

Influence of Deposition Rate on the Optoelectrical Properties of TIO Thin Films (증착율 변화에 따른 TIO 박막의 전기적, 광학적 특성 변화)

  • Moon, Hyun-Joo;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.2
    • /
    • pp.62-65
    • /
    • 2016
  • TIO thin films were deposited on the poly-carbonate substrates with RF magnetron sputtering under different sputtering power condition to investigate the influence of deposition rate on the electrical and optical properties of the films. Although, all films have the similar carrier concentration, the films prepared at a lower deposition rate of 4 nm/min show a higher mobility of $5.96cm^2\;V^{-1}S^{-1}$ due to the low surface roughness. In addition, optical transmittance is also influenced by a deposition rate. Based on the figure of merit, it can be concluded that the lower deposition rate effectively enhances the opto-electrical performance of IGZO films for use as transparent conducting oxides in flexible display applications.

The Structures, Optical and Electrical Properties of IGZO Thin Films by RF Magnetron Sputtering According to RF Power (RF magnetron sputtering으로 증착한 IGZO 박막의 RF power에 따른 구조적, 광학적 및 전기적 특성 연구)

  • Yeon, Je ho;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.57-61
    • /
    • 2016
  • We have studied the structural, optical and electrical properties of IGZO thin films. The IGZO thin films were deposited on the silicon wafer by RF magnetron sputtering method. The RF power in sputtering process was varied as 15W, 30W, 45W, 60W, 75W, respectively. All of the thin films transmittance in the visible range was above 85%. XRD analysis showed that amorphous structure of the thin films without any peak. The Hall measurements in the low RF power is the high mobility above $10cm^2/V{\cdot}s$ and the low resistvity are obtained in the IGZO thin films.

Properties of AZO thin film with sputtering current at room temperature (투입전류 변화에 따라 실온 제작한 AZO 박막의 특성)

  • Kim, Kyung-Hwan;Cho, Bum-Jin;Keum, Min-Jong;Son, In-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1859-1861
    • /
    • 2005
  • The ZnO:Al thin films were prepared on glass by Facing Target Sputtering (FTS) system. We investigated electrical, optical, and structural properties of AZO thin film with sputtering current $0.1[A]{\sim}0.6[A]$. We obtained the lowest resistivity $2.3{\times}10^{-4}[{\Omega}-cm]$ at sputtering current 0.6[A] from the 4-point probe and the strong (002) peak at sputtering current 0.3[A] from the X-ray Diffractometer (XRD ). The optical transmittance of AZO thin films show a very high transmittance of $80{\sim}95%$ in the visible range and exhibit the absorption edge of about 350nm.

  • PDF

Characteristics of Amorphous IZO Anode Films Grown on Passivated PES Substrates in Oxygen Free Ambient for Flexible OLEDs (아르곤 가스만을 이용하여 PES 기판 상에 성장시킨 플렉시블 유기발광소자용 비정질 IZO 애노드 박막의 특성)

  • Bae, Jung-Hyeok;Moon, Jong-Min;Jung, Soon-Wook;Kang, Jae-Wook;Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1134-1139
    • /
    • 2006
  • Electrical, optical, and structural properties of indium zinc oxide (IZO) anode films grown by a RF magnetron sputtering were investigated as functions of RF power and working pressure in pure Ar ambient. To investigate electrical, optical and structural properties of IZO anode films, 4-point probe and UV/VIS spectrometry, and X-ray diffraction (XRD) were performed, respectively. A sheet resistance of $15.2{\Omega}/{\square}$, average transmittance above 80 % in visible range, expecially above 85 % in 550 nm, and root mean square roughness of 1.13 nm were obtained from optimized IZO anode films grown in oxygen free ambient. All samples show amorphous structure regardless of RF power and working pressure due to low substrate temperature. In addition, XPS depth profile obtained from IZO/PES exhibits that there is no obvious evidence of interfacial reaction between IZO and PES substrate. Furthermore, current-voltage-luminance of the flexible phosphorescent flexible OLEDs fabricated on IZO anode shows dependence on sheet resistance of the IZO anode. These results indicate that the IZO anode is a promising candidate to substitute conventional ITO anode for high-quality flexible displays.

Electrical and Optical proper ties of Sno$_2$:sb thin Films Using Reactive DC Suttering (반응성 DC sputtering으로 제작한 Sno$_2$:Sb 박막의 전기적.광학적 특성)

  • Jung H. W.;Lee, C.;Shin, J. H.;Song, K. H.;Sin, Seong-Ho;Park, J. I.;Park, K. J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.6
    • /
    • pp.406-411
    • /
    • 1997
  • Transparent conductive thin films have found many applications in active and passive electronic and opto-electronic devices such as flat panel display electrode, solar cell electrode and window heat mirror, etc. Low resistivity and high transmittance of these films can beotained by controlling deposition parameters which are oxygen partial pressure, substrate temperature and dopant concentration. In this study, non-stoichiometric and Sb-doped thin electrical properties of undoped films have been degraded with increase of substrate temperature and optical properties have been improved in Sb-doped films. The resistivity of $2.5\times10^{-3}\Omega\textrm{cm}$,/TEX>, average transmittance of 80% and sheet resistance of 130$\Omega$/$\square$ at thickess of 2000 $\AA$ could be obrained at optmal condimal conditions which were at $400^{\circ}C$ of substrate temperature, 58% of oxygen partial pressure and 5% of Sb doping concentration.

  • PDF

Characteristics of Indium Zinc Tin Oxide films grown by RF magnetron sputtering for organic light emitting diodes (RF magnetron sputtering system으로 성장시킨 OLED용 IZTO 박막의 특성연구)

  • Park, Ho-Kyun;Jeong, Soon-Wook;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.412-413
    • /
    • 2007
  • We report on the electrical, optical, and structural properties of indium zinc tin oxide (IZTO) anode films grown at room temperature on glass substrate. The IZTO anode films grown by a RF magnetron sputtering were investigated as functions of RF power, working pressure, and process time in pure Ar ambient. To investigate electrical, optical and structural properties of IZTO anode films, 4-point probe, Hall measurement, UV/Vis spectrometer, Field Emission Scanning Electron Microscopy (FE-SEM), and X-ray diffraction (XRD) were performed, respectively. A sheet resistance of $13.88\;{\Omega}/{\square}$, average transmittance above 80 % in visible range were obtained from optimized IZTO anode films grown on glass substrate. These results shown the amorphous structure regardless of RF power and working pressure due to low substrate temperature.

  • PDF

Comparison of the Electrical and Optical Properties in between Transparent ITO and Au Electrodes using Hydrogen-storage Metals as Intermediate Layers (수소저장합금을 이용한 p-GaN ITO 투명전극과 Au 전극과의 특성비교)

  • Chae, Seung-Wan;Kim, Chul-Min;Kim, Eun-Hong;Lee, Byung-Kyu;Shin, Young-Chul;Kim, Tae-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.610-614
    • /
    • 2008
  • In this work, the electrical and optical properties of the two different p-type GaN electrode schemes, ZnNi/ITO and ZnNi/Au, were compared each other, and applied to the top-emitting GaN/InGaN light-emitting diodes (LEDs). The ZnNi/ITO electrode showed much higher transmittance (90%) and slightly lower contact resistance $(1.27{\times}10^{-4}{\Omega}cm^2)$ than those (77%, $(2.26{\times}10^{-4}{\Omega}cm^2)$) of the ZnNi/Au at a wavelength of 460 nm. In addition, GaN LEDs having ZnNi/ITO showed accordingly higher light output power and luminous intensity than those having ZnNI/Au did at the current levels up to 1 A.