• Title/Summary/Keyword: Optical Temperature Sensor

Search Result 372, Processing Time 0.025 seconds

A Study on Performance Improvement of Optical Current Transformer and Signal Processor (벌크형 광 CT 센서 및 신호처리부 성능 개선 방안 연구)

  • Kim, Young-Soo;Park, Byung-Seok;Kim, Myong-Soo;Lim, Yong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1929-1932
    • /
    • 2002
  • In this paper, some parameters are studied for the performance improvement of a bulk optical current sensor. The performance of optical current sensor is influenced by current measuring range, Verdet constant change due to temperature change, temperature variation of wave plate, signal to noise ratio of optical transmitter/receiver, optical bias mismatch. Two types of optical current sensors are implemented and tested in the current range from 10 ampere to 200 ampere.

  • PDF

Thermal Strain and Temperature Measurements of Structures by Using Fiber-Optic Sensors (광섬유 센서를 이용한 구조물의 열변형 및 온도 측정)

  • 강동훈;강현규;류치영;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.184-189
    • /
    • 2000
  • Two types of fiber-optic sensors, EFPI(extrinsic Fabry-Perot interferometer) and FBG(fiber Bragg grating), have been investigated for measurement of thermal strain and temperature. The EFPI sensor is only for measurement of thermal strain and the FBG sensor is for simultaneous measurement of thermal strain and temperature. FBG temperature sensor was developed to measure strain-independent temperature. This sensor configuration consists of a single-fiber Bragg grating and capillary tube which makes it isolated from external strain. This sensor can then be used to compensate for the temperature cross sensitivity of a FBG strain sensor. These sensors are demonstrated by embedding them into a graphite/epoxy composite plate and by attaching them on aluminum rod and unsymmetric graphitelepoxy composite plate. All the tests were conducted in a thermal chamber with the temperature range $20-100^{\circ}C$. Results of strain measurements by fiber-optic sensors are compared with that from conventional resistive foil gauge attached on the surface.

  • PDF

Temperature Compensation Algorithm of Nondispersive Infrared (NDIR) Gas Sensor (비분산 적외선 가스센서의 온도보상 알고리즘)

  • Park, Jong-Seon;Yi, Seung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.51-55
    • /
    • 2011
  • This paper describes the temperature compensation algorithm using thermopile detector for nondispersive infrared methane gas sensor. From the output voltage of thermistor that is attached onto the infrared detector, the ambient temperature was extracted. The effects of temperatures on the properties of sensor module (the characteristics of narrow bandpass filter, optical cavity and infrared lamp, and gas absorption coefficient times optical path length) have been introduced in order to implement the temperature compensation algorithm. Even though the measurement error of developed sensor module was in the range of $\pm$ 1,500 ppm, after programming the temperature compensation algorithm, the developed sensor module shows a high accuracy less than +180 ppm error within $20^{\circ}C$ temperature variation.

Cryogenic Temperature Measurement Using Amplified Spontaneous Emission of Erbium-Doped Fiber (오븀 첨가 광섬유의 증폭 자발 방출을 이용한 저온 측정)

  • Lee, Yong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1992-1994
    • /
    • 2007
  • In this paper we propose a cryogenic sensor system which can measure the temperature at higher resolution at low temperature using temperature-dependent amplified spontaneous emission of erbium-doped fiber pumped by a 1480 nm laser diode. The measurement resolution of the sensor system could be enhanced through the modulation of injection current of the pump laser diode. The measurement resolution considering the fluctuation of the light source in the sensor system was ${\sim}0.4$ K in the room temperature regime and ${\sim}0.07$ K in the liquid nitrogen temperature regime.

FBG sensor system for condition monitoring of wind turbine blades (풍력터빈 블레이드 상태 감시용 광섬유격자 센서시스템)

  • Kim, Dae-Gil;Kim, Hyunjin;Song, Minho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.75-82
    • /
    • 2013
  • We propose a fiber grating sensor system for condition monitoring of large scale wind turbine blades. For the feasibility test of the proposed sensor system, a down-scaled wind turbine has been constructed and experimented. Fiber grating sensors were attached on a blade surface for distributed strain and temperature measurements. An optical rotary joint was used to transmit optical signals between the FBG sensor array and the signal processing unit. Instead of broadband light source, we used a wavelength-swept fiber laser to obtain high output power density. A spectrometer demodulation is used to alleviate the nonlinear wavelength tuning problem of the laser source. With the proposed sensor system we could measure dynamic strain and temperature profiles at multi-positions of rotating wind turbine blades.

Improvement of Thermal Stability of Optical Current Sensors Based on Polymeric Optical Integrated Circuits for Quadrature Phase Interferometry (사분파장 위상 간섭계 폴리머 광집적회로 기반 광전류센서의 온도 안정성 향상 연구)

  • Chun, Kwon-Wook;Kim, Sung-Moon;Park, Tae-Hyun;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.249-254
    • /
    • 2019
  • An optical current sensor device that measures electric current by the principle of the Faraday effect was designed and fabricated. The polarization-rotated reflection interferometer and the quadrature phase interferometer were introduced so as to improve the operational stability. Complex structures containing diverse optical components were integrated in a polymeric optical integrated circuit and manufactured in a small size. This structure allows sensing operation without extra bias feedback control, and reduces the phase change due to environmental temperature changes and vibration. However, the Verdet constant, which determines the Faraday effect, still exhibits an inherent temperature dependence. In this work, we tried to eliminate the residual temperature dependence of the optical current sensor based on polarization-rotated reflection interferometry. By varying the length of the fiber-optic wave plate, which is one of the optical components of the interferometer, we could compensate for the temperature dependence of the Verdet constant. The proposed optical current sensor exhibited measurement errors maintained within 0.2% over a temperature range, from 25℃ to 85℃.

A Fiberoptic Temperature Sensor Using Low-Coherence Light Source (가간섭성이 낮은 광원을 이용한 광섬유 온도 센서)

  • Kim, Gwang-Su;Lee, Hong-Sik;Im, Geun-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.691-697
    • /
    • 2000
  • A fiberoptic sensor using a low-coherence SLD as a light source has been studied. The sensor system employing an intrinsic fiber Fabry-Peort interferometer as a sensing tip and a fiber Mach-Zehnder interferometer as a processing one, overcomes the ambiguous reading caused by the highly periodic natrue of conventional high-precision interferometric sensors and provides unambiguous identification of the desired phase among several candidates on the transfer function of an interferometric signal. A tentative application to the temperature sensor shows the potential that the fiberoptic sensor has a side-dynamic range of $0-900^{\circ}C$ as well as reasonable resolution higher than $0.1^{\circ}C$ without ambiguity. Due to the inherent property of the optical fiber itself and the intrinsic fiber Fabry-Perot interferometer, the proposed fiberoptic sensor will give obvious benefits when it is applied to harsh environments to monitor some physical parameters such as temperature, strain, pressure and vibration.

  • PDF

Characteristic analysis of a thermochromic material based fiber-optic temperature sensor for measuring temperature of subsurface water (열변성 물질을 이용한 지하수 온도 측정용 광섬유 온도센서의 특성분석)

  • Seo, Jeong-Ki;Yoo, Wook-Jae;Cho, Dong-Hyun;Jang, Kyoung-Won;Heo, Ji-Yeon;Lee, Bong-Soo;Koh, Yong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.467-474
    • /
    • 2009
  • In this study, we describe the feasibility of developing a fiber-optic temperature sensor using a thermochromic material such as 2,4,5-triphenylimidazole or also called Lophine. A sensor-tip is fabricated by mixing of a Lophine powder, which has a non-toxic and hydrophobic characteristics, and an epoxy resin. The temperature change in the sensor-tip gives rise to a change in the optical absorbance of the Lophine, and the transmittance of a light through the Lophine is also changed. We have measured the intensities of modulated lights due to the change of optical absorbance of the Lophine by using of a photo-multiplier tube(PMT). The relationships between the temperatures and the output voltages of PMT are determined to measure the temperature of water. The measurable temperature range of the fiber-optic sensor is from 5 to $30^{\circ}C$.

Measurements of Thermal Gradient and Thermal Strain of Mortar Specimens Using Fiber Bragg Grating Sensor (광섬유 격자 센서를 이용한 모르타르시편의 온도구배 및 열 변형 측정)

  • Rhim, Hong-Chul;Lee, Eun-Joo;Chun, Heung-Jae;Park, Dong-Nyuck
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.133-138
    • /
    • 2003
  • As concrete structures are heated, thermal strain can be developed. Because of the boundary conditions, the thermal stress may be arisen. Thermal strain and temperature were measured simultaneously using an optical fiber sensor. Fiber Bragg Grating Sensor(FBG sensor) was used in the measurement. Because it can measure the strains more than two points with one line, it was possible to measure both thermal strain and temperature with one line. To compare data measured by FBG sensor, strain and temperature were measured using strain gauge and thermocouple. The FBG sensor could measure the strain under the temperature greater than $60^{\circ}C$ but strain gauge couldn't. Both the FBG temperature sensor and thermocouple could measure the temperature and the results are related each other linearly.