• Title/Summary/Keyword: Optical Resolution

Search Result 1,463, Processing Time 0.026 seconds

Ellipsometric Investigation of Optical Property of AgOx mask layer for Super-RENS Application (타원법을 이용한 Super-RENS 용 AgOx mask 층의 광물성 연구)

  • Xuezhe Li;Kim, Sang-Jun;Kim, Sang-Youl
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.36-37
    • /
    • 2003
  • To increase the high-density data storage, a new technique of Super-resolution near-field structure (Super-RENS) consisted of glass/SiN/Sb or AgOx/SiN has been proposed and investigated intensively as a promising structure for near-field ultrahigh-density optical storage. Hence it is important to determine the optical properties of AgOx by using ellipsometry. AgOx thin films were prepared by using magnetron sputtering technique while oxygen flow rate was varied, and the film growth of AgOx were monitored by using in situ ellipsometer. (omitted)

  • PDF

Development of the Imaging Optical System for the 545 nm Fluorescent Plate of X-ray (X선용 545 nm 형광판 결상광학계 개발)

  • Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.2
    • /
    • pp.17-22
    • /
    • 2008
  • To develop an imaging optical system for the 545 nm fluorescent plate of X-ray. Methods: We designed and manufactured a new imaging optical system for the 545 nm fluorescent plate of X-ray by Sigma 2000 program after deciding the design comparison standards referred to Canon CX2-70 model. Results: The characteristics of the new imaging optical system for the 545 nm fluorescent plate of X-ray have the magnification of -0.225x, the image field size of $90mm{\times}90mm$, and the 0.033 mm resolution line width at the 30% MTF value criterion. These mean that the new model has a capability of deciphering for the more large screen and the resolution of deciphering is superior to that of Canon CX2-70 model. Also the image side NA (-0.196) of the new model is about $\sqrt{2}$ times than that (-0.139) of CX2-70 and the object side NA (0.044) of the new model is about 2 times than that (0.022) of CX2-70. These mean that the sensitivity of the film in the new design model is able to be increased to about 4 times and there is the possibility of reducing the bombed time of X-ray to 1/4 times. Conclusions: We could design and manufacture the imaging optical system for the 545 nm fluorescent plate of X-ray having the possibility of reducing the bombed time of X-ray to 1/4 times in comparision to Canon CX2-70 model, the characteristics of which have the image field size of $90mm{\times}90mm$ and the MTF of 30% or more at 15 lines/mm criterion.

  • PDF

Optical System Design for Projection TV using Micro Display (마이크로 디스플레이를 이용한 프로젝션 TV용 광학계 설계)

  • Park, Sung-Chan;Lee, Jung-Yul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.240-247
    • /
    • 2006
  • This paper discusses the optical system design for projection TV using LCOS type micro display, which provides the high resolution, slim depth, and a large screen of more than 60 inches. We analyzed the relationship between the illumination system, projection lens, color separation & recombination system, and micro display. From this quantitative analysis, the starting data for the optimum light engine was defined, and all optical systems were designed by an optimization process. Three RGB panels were proposed for a high luminence system, and the four prisms symmetrically located make equal optical path lengths for the RGB rays. This color separation & recombination system enables the a compact illumination system. Also, in order to the slim light engine with high resolution, the folded projection lens system was designed by inserting a mirror between projection lenses.

Multimodal Nonlinear Optical Microscopy for Simultaneous 3-D Label-Free and Immunofluorescence Imaging of Biological Samples

  • Park, Joo Hyun;Lee, Eun-Soo;Lee, Jae Yong;Lee, Eun Seong;Lee, Tae Geol;Kim, Se-Hwa;Lee, Sang-Won
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.551-557
    • /
    • 2014
  • In this study, we demonstrated multimodal nonlinear optical (NLO) microscopy integrated simultaneously with two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS) in order to obtain targeted cellular and label-free images in an immunofluorescence assay of the atherosclerotic aorta from apolipoprotein E-deficient mice. The multimodal NLO microscope used two laser systems: picosecond (ps) and femtosecond (fs) pulsed lasers. A pair of ps-pulsed lights served for CARS (817 nm and 1064 nm) and SHG (817 nm) images; light from the fs-pulsed laser with the center wavelength of 720 nm was incident into the sample to obtain autofluorescence and targeted molecular TPEF images for high efficiency of fluorescence intensity without cross-talk. For multicolor-targeted TPEF imaging, we stained smooth-muscle cells and macrophages with fluorescent dyes (Alexa Fluor 350 and Alexa Fluor 594) for an immunofluorescence assay. Each depth-sectioned image consisted of $512{\times}512$ pixels with a field of view of $250{\times}250{\mu}m^2$, a lateral resolution of $0.4{\mu}m$, and an axial resolution of $1.3{\mu}m$. We obtained composite multicolor images with conventional label-free NLO images and targeted TPEF images in atherosclerotic-plaque samples. Multicolor 3-D imaging of atherosclerotic-plaque structural and functional composition will be helpful for understanding the pathogenesis of cardiovascular disease.

High-resolution optical and near-infrared spectroscopic study of 2MASS J06593158-0405277

  • Park, Sunkyung;Lee, Jeong-Eun;Pyo, Tae-Soo;Sung, Hyun-Il;Lee, Sang-Gak;Kang, Wonseok;Oh, Hyung-Il;Yoon, Tae Seog;Mace, Gregory N.;Jaffe, Daniel T.;Yoon, Sung-Yong;Green, Joel D.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.50.2-50.2
    • /
    • 2019
  • We present the results of high-resolution (R ≥ 30,000) optical and near-infrared spectroscopic monitoring observations of a FU Orionis-type object, 2MASS J06593158-0405277. We have monitored 2MASS J06593158-0405277 with the Bohyunsan Optical Echelle Spectrograph (BOES) and the Immersion GRating INfrared Spectrograph (IGRINS) since December 2014. Various features produced by wind, disk, and outflow/jet were detected. The wind features varied over time and disappeared about a year after the outburst occurred. The double-peaked line profiles were detected in the optical and near-infrared, and the line widths decrease with increasing wavelength. The disk features in the optical spectra are fit well with G2-type or G5-type stellar spectra convolved with a disk rotational profile of about 45 km s-1, which corresponds to a disk radius of about 71 Rfor a central mass of 0.75 M. Disk features in near-infrared spectra are fit well with a K1-type stellar spectrum convolved with a disk rotational profile of about 35 km s-1, which corresponds to a disk radius of about 117 R for a central mass of 0.75 M. We also detected [S II] and H2 emission lines, which are rarely found in FUors but are usually found in the earlier stage of young stellar objects. Therefore, we suggest that 2MASS J06593158-0405277 is in the relatively earlier part of Class II stage.

  • PDF

Wide-angle Optical Module Design for Mobile Phone Camera Using Recursive Numerical Computation Method (재귀적 수치 계산법을 적용한 모바일 폰용 광각 광학계 설계)

  • Kyu Haeng Lee;Sung Min Park;Kye Jin Jeon
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.164-169
    • /
    • 2024
  • We applied recursive numerical computation to create a basic design of a camera optical module for mobile phones. To enhance the resolution performance for a 38-degree field of view, we constructed the optical system with six non-spherical lenses. However, to increase its applicability to a compact mobile phone, we limited the overall length to 5 mm in the design. Using the data obtained from the basic design, we proceeded with optimization design using the Zemax design tool. The optimized optical system achieved a resolution performance with a modulation transfer function value of more than 19% for a 280 lines/mm pattern and image distortion within 1.0% for all wavelength rays. In this paper, we verify the feasibility of using recursive numerical computation for the basic design of a compact mobile phone camera.

Design of 1× Optical Path Relay Adapter for Beam Splitting Prism used in Day & Night Scope (주야 관측경용 빔 분리프리즘을 위한 1× Optical Path Relay Adapter 설계)

  • Lee, Dong-Hee;Choi, Gyu-Jung;Jung, In;Park, Seung-Hwan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.4
    • /
    • pp.441-447
    • /
    • 2012
  • Purpose: This paper is about development and design of the 1x optical path relay adapter for the beam splitting prism by us the day & night scope. Methods: To product the day & night scope by using the beam splitting prism and the commercial zoom optical system with the C-mount lens barrel structure, the optical path relay adapter, which doesn't change the image size of the zoom optical system and can stretch the position of the image-forming surface, is needed. We could design the 1x optical path relay adapter by using the CodeV program in which the Lens Module mode is offered. Results: We could design the optical path relay adapter used in the day&night scope with the beam splitting prism, of which characteristics have the EFL of -56.0 mm, the magnification of +1.0x, the distance from the 1st lens surface to the last lens surface of about 20.4 mm. The resolution of this system is characterized by 30 lp/mm at 40% MTF. This is enough to accommodate the designed optical path relay adapter can overcome the resolution of the 3rd generation of image intesifier tubes. Conclusions: By designing and applying the optical path relay adapter of which optical characteristics have the EFL of -56.0 mm, the magnification of +1.0x, the distance from the 1st lens surface to the last lens surface of about 20.4 mm, and the resolution of 30 lp/mm at 40% MTF, we could develop the new type day&night scope consisting of the beam splitting, the commercial zoom optical system with the C-mount lens barrel structure, and the 3rd generation of image intesifier tubes.

A Simple Optical Signal to Noise Ratio Monitoring Technique for OADM (광섬유 브래그 격자를 이용한 광 분기 결합기의 광신호 대 잡음비 측정방법)

  • Youn, Ji-Wook;Park, Heuk;Kim, Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.10
    • /
    • pp.43-47
    • /
    • 2002
  • A simple optical signal to noise ratio monitoring method using fiber Bragg grating is proposed for monitoring performance of OADM. OSNR of each channel is determined by monitoring the optical power transmitted and reflected from fiber Bragg gratings, simultaneously. We have obtained OSNR with accuracy better than 0.8㏈ compared with OSA of 0.1nm optical resolution in the wide input power range between -6 ㏈m and -23㏈m per channel.

A Study on Dip-Pen Nanolithography Process to fabricate Two-dimensional Photonic Crystal for Planar-type Optical Biosensor (평판형 광-바이오센서용 2차원 광자결정 제작을 위한 Dip-Pen Nanolithography 공정 연구)

  • Kim Jun-Hyong;Lee Jong-Il;Lee Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.267-272
    • /
    • 2006
  • Optical waveguide based on symmetric and asymmetric Mach-Zehnder interferometer(MZI) type was designed, fabricated and measured the optical characteristics for the application of biosensor. The wavelength of the input optical signal for the device was 1550 nm. And the difference of refractive index was $0.45\;{\Delta}\%$ between core and cladding of the device. The TM(Transverse Magnetic) mode optical properties of the biosensor were analyzed with the refractive index variation of gold thin film deposited for overclad. Nowadays, nano-photonic crystal structures have been paied much attention for its high optical sensitivity. There is a technique to realize the structure, which is called Dip-Pen Nanolithography(DPN) process. The process requires a nano-scale process patterning resolution and high reliability. In this paper, two dimensional nano-photonic crystal array on the surface was proposed for improving the sensitivity of optical biosensor. And the Dip-Pen Nanolithogrphy process was investigated to realize it.

An Optical Design of Off-axis Four-mirror-anastigmatic Telescope for Remote Sensing

  • Li, Xing Long;Xu, Min;Ren, Xian Dong;Pei, Yun Tian
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.243-246
    • /
    • 2012
  • An off-axis four-mirror-anastigmatic telescope is presented here which is composed of two aspheric surfaces and two spherical surfaces. The entrance pupil diameter is 290 mm and the stop is located at the primary mirror. The effective focal length is 900 mm. The strip field of view for the telescope is $15^{\circ}{\times}0.2^{\circ}$ and if the telescope is launched into an orbit about 400 km altitude, the observed range width will be more than 105 km within a scene without any other auxiliary scanning instrument. The spectral range can be as wide as from visual wave band to infrared wave band in the mirror system. This telescope can be used for environmental monitoring with different detectors whose pixel is adapted to the optical resolution. In this paper, the spectral range is chosen as 3.0 -5.0 ${\mu}m$, and center distance of the pixel is 30 ${\mu}m$. And the image quality is near the diffraction limit.