• Title/Summary/Keyword: Optical Music Score Recognition

Search Result 6, Processing Time 0.018 seconds

Optical Music Score Recognition System for Smart Mobile Devices

  • Han, SeJin;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.10 no.4
    • /
    • pp.63-68
    • /
    • 2014
  • In this paper, we propose a smart system that can optically recognize a music score within a document and can play the music after recognition. Many historic handwritten documents have now been digitalized. Converting images of a music score within documents into digital files is particularly difficult and requires considerable resources because a music score consists of a 2D structure with both staff lines and symbols. The proposed system takes an input image using a mobile device equipped with a camera module, and the image is optimized via preprocessing. Binarization, music sheet correction, staff line recognition, vertical line detection, note recognition, and symbol recognition processing are then applied, and a music file is generated in an XML format. The Music XML file is recorded as digital information, and based on that file, we can modify the result, logically correct errors, and finally generate a MIDI file. Our system reduces misrecognition, and a wider range of music score can be recognized because we have implemented distortion correction and vertical line detection. We show that the proposed method is practical, and that is has potential for wide application through an experiment with a variety of music scores.

Score Image Retrieval to Inaccurate OMR performance

  • Kim, Haekwang
    • Journal of Broadcast Engineering
    • /
    • v.26 no.7
    • /
    • pp.838-843
    • /
    • 2021
  • This paper presents an algorithm for effective retrieval of score information to an input score image. The originality of the proposed algorithm is that it is designed to be robust to recognition errors by an OMR (Optical Music Recognition), while existing methods such as pitch histogram requires error induced OMR result be corrected before retrieval process. This approach helps people to retrieve score without training on music score for error correction. OMR takes a score image as input, recognizes musical symbols, and produces structural symbolic notation of the score as output, for example, in MusicXML format. Among the musical symbols on a score, it is observed that filled noteheads are rarely detected with errors with its simple black filled round shape for OMR processing. Barlines that separate measures also strong to OMR errors with its long uniform length vertical line characteristic. The proposed algorithm consists of a descriptor for a score and a similarity measure between a query score and a reference score. The descriptor is based on note-count, the number of filled noteheads in a measure. Each part of a score is represented by a sequence of note-count numbers. The descriptor is an n-gram sequence of the note-count sequence. Simulation results show that the proposed algorithm works successfully to a certain degree in score image-based retrieval for an erroneous OMR output.

Camera-based Music Score Recognition Using Inverse Filter

  • Nguyen, Tam;Kim, SooHyung;Yang, HyungJeong;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.10 no.4
    • /
    • pp.11-17
    • /
    • 2014
  • The influence of acquisition environment on music score images captured by a camera has not yet been seriously examined. All existing Optical Music Recognition (OMR) systems attempt to recognize music score images captured by a scanner under ideal conditions. Therefore, when such systems process images under the influence of distortion, different viewpoints or suboptimal illumination effects, the performance, in terms of recognition accuracy and processing time, is unacceptable for deployment in practice. In this paper, a novel, lightweight but effective approach for dealing with the issues caused by camera based music scores is proposed. Based on the staff line information, musical rules, run length code, and projection, all regions of interest are determined. Templates created from inverse filter are then used to recognize the music symbols. Therefore, all fragmentation and deformation problems, as well as missed recognition, can be overcome using the developed method. The system was evaluated on a dataset consisting of real images captured by a smartphone. The achieved recognition rate and processing time were relatively competitive with state of the art works. In addition, the system was designed to be lightweight compared with the other approaches, which mostly adopted machine learning algorithms, to allow further deployment on portable devices with limited computing resources.

Super-resolution in Music Score Images by Instance Normalization

  • Tran, Minh-Trieu;Lee, Guee-Sang
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.64-71
    • /
    • 2019
  • The performance of an OMR (Optical Music Recognition) system is usually determined by the characterizing features of the input music score images. Low resolution is one of the main factors leading to degraded image quality. In this paper, we handle the low-resolution problem using the super-resolution technique. We propose the use of a deep neural network with instance normalization to improve the quality of music score images. We apply instance normalization which has proven to be beneficial in single image enhancement. It works better than batch normalization, which shows the effectiveness of shifting the mean and variance of deep features at the instance level. The proposed method provides an end-to-end mapping technique between the high and low-resolution images respectively. New images are then created, in which the resolution is four times higher than the resolution of the original images. Our model has been evaluated with the dataset "DeepScores" and shows that it outperforms other existing methods.

Improved Lexicon-driven based Chord Symbol Recognition in Musical Images

  • Dinh, Cong Minh;Do, Luu Ngoc;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.12 no.4
    • /
    • pp.53-61
    • /
    • 2016
  • Although extensively developed, optical music recognition systems have mostly focused on musical symbols (notes, rests, etc.), while disregarding the chord symbols. The process becomes difficult when the images are distorted or slurred, although this can be resolved using optical character recognition systems. Moreover, the appearance of outliers (lyrics, dynamics, etc.) increases the complexity of the chord recognition. Therefore, we propose a new approach addressing these issues. After binarization, un-distortion, and stave and lyric removal of a musical image, a rule-based method is applied to detect the potential regions of chord symbols. Next, a lexicon-driven approach is used to optimally and simultaneously separate and recognize characters. The score that is returned from the recognition process is used to detect the outliers. The effectiveness of our system is demonstrated through impressive accuracy of experimental results on two datasets having a variety of resolutions.

A Robust Staff Line Height and Staff Line Space Estimation for the Preprocessing of Music Score Recognition (악보인식 전처리를 위한 강건한 오선 두께와 간격 추정 방법)

  • Na, In-Seop;Kim, Soo-Hyung;Nquyen, Trung Quy
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • In this paper, we propose a robust pre-processing module for camera-based Optical Music Score Recognition (OMR) on mobile device. The captured images likely suffer for recognition from many distortions such as illumination, blur, low resolution, etc. Especially, the complex background music sheets recognition are difficult. Through any symbol recognition system, the staff line height and staff line space are used many times and have a big impact on recognition module. A robust and accurate staff line height and staff line space are essential. Some staff line height and staff line space are proposed for binary image. But in case of complex background music sheet image, the binarization results from common binarization algorithm are not satisfactory. It can cause incorrect staff line height and staff line space estimation. We propose a robust staff line height and staff line space estimation by using run-length encoding technique on edge image. Proposed method is composed of two steps, first step, we conducted the staff line height and staff line space estimation based on edge image using by Sobel operator on image blocks. Each column of edge image is encoded by run-length encoding algorithm Second step, we detect the staff line using by Stable Path algorithm and removal the staff line using by adaptive Line Track Height algorithm which is to track the staff lines positions. The result has shown that robust and accurate estimation is possible even in complex background cases.