• Title/Summary/Keyword: Optical Music Recognition(OMR)

Search Result 8, Processing Time 0.02 seconds

Score Image Retrieval to Inaccurate OMR performance

  • Kim, Haekwang
    • Journal of Broadcast Engineering
    • /
    • v.26 no.7
    • /
    • pp.838-843
    • /
    • 2021
  • This paper presents an algorithm for effective retrieval of score information to an input score image. The originality of the proposed algorithm is that it is designed to be robust to recognition errors by an OMR (Optical Music Recognition), while existing methods such as pitch histogram requires error induced OMR result be corrected before retrieval process. This approach helps people to retrieve score without training on music score for error correction. OMR takes a score image as input, recognizes musical symbols, and produces structural symbolic notation of the score as output, for example, in MusicXML format. Among the musical symbols on a score, it is observed that filled noteheads are rarely detected with errors with its simple black filled round shape for OMR processing. Barlines that separate measures also strong to OMR errors with its long uniform length vertical line characteristic. The proposed algorithm consists of a descriptor for a score and a similarity measure between a query score and a reference score. The descriptor is based on note-count, the number of filled noteheads in a measure. Each part of a score is represented by a sequence of note-count numbers. The descriptor is an n-gram sequence of the note-count sequence. Simulation results show that the proposed algorithm works successfully to a certain degree in score image-based retrieval for an erroneous OMR output.

YOLO based Optical Music Recognition and Virtual Reality Content Creation Method (YOLO 기반의 광학 음악 인식 기술 및 가상현실 콘텐츠 제작 방법)

  • Oh, Kyeongmin;Hong, Yoseop;Baek, Geonyeong;Chun, Chanjun
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.80-90
    • /
    • 2021
  • Using optical music recognition technology based on deep learning, we propose to apply the results derived to VR games. To detect the music objects in the music sheet, the deep learning model used YOLO v5, and Hough transform was employed to detect undetected objects, modifying the size of the staff. It analyzes and uses BPM, maximum number of combos, and musical notes in VR games using output result files, and prevents the backlog of notes through Object Pooling technology for resource management. In this paper, VR games can be produced with music elements derived from optical music recognition technology to expand the utilization of optical music recognition along with providing VR contents.

Staff-line and Measure Detection using a Convolutional Neural Network for Handwritten Optical Music Recognition (손사보 악보의 광학음악인식을 위한 CNN 기반의 보표 및 마디 인식)

  • Park, Jong-Won;Kim, Dong-Sam;Kim, Jun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1098-1101
    • /
    • 2022
  • With the development of computer music notation programs, when drawing sheet music, it is often drawn using a computer. However, there are still many use of hand-written notations for educational purposes or to quickly draw sheet music such as listening and dictating. In previous studies, OMR focused on recognizing the printed music sheet made by music notation program. the result of handwritten OMR with camera is poor because different people have different writing methods, and lens distortion. In this study, as a pre-processing process for recognizing handwritten music sheet, we propose a method for recognizing a staff using linear regression and a method for recognizing a bar using CNN. F1 scores of staff recognition and barline detection are 99.09% and 95.48%, respectively. This methodologies are expected to contribute to improving the accuracy of handwriting.

Camera-based Music Score Recognition Using Inverse Filter

  • Nguyen, Tam;Kim, SooHyung;Yang, HyungJeong;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.10 no.4
    • /
    • pp.11-17
    • /
    • 2014
  • The influence of acquisition environment on music score images captured by a camera has not yet been seriously examined. All existing Optical Music Recognition (OMR) systems attempt to recognize music score images captured by a scanner under ideal conditions. Therefore, when such systems process images under the influence of distortion, different viewpoints or suboptimal illumination effects, the performance, in terms of recognition accuracy and processing time, is unacceptable for deployment in practice. In this paper, a novel, lightweight but effective approach for dealing with the issues caused by camera based music scores is proposed. Based on the staff line information, musical rules, run length code, and projection, all regions of interest are determined. Templates created from inverse filter are then used to recognize the music symbols. Therefore, all fragmentation and deformation problems, as well as missed recognition, can be overcome using the developed method. The system was evaluated on a dataset consisting of real images captured by a smartphone. The achieved recognition rate and processing time were relatively competitive with state of the art works. In addition, the system was designed to be lightweight compared with the other approaches, which mostly adopted machine learning algorithms, to allow further deployment on portable devices with limited computing resources.

Super-resolution in Music Score Images by Instance Normalization

  • Tran, Minh-Trieu;Lee, Guee-Sang
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.64-71
    • /
    • 2019
  • The performance of an OMR (Optical Music Recognition) system is usually determined by the characterizing features of the input music score images. Low resolution is one of the main factors leading to degraded image quality. In this paper, we handle the low-resolution problem using the super-resolution technique. We propose the use of a deep neural network with instance normalization to improve the quality of music score images. We apply instance normalization which has proven to be beneficial in single image enhancement. It works better than batch normalization, which shows the effectiveness of shifting the mean and variance of deep features at the instance level. The proposed method provides an end-to-end mapping technique between the high and low-resolution images respectively. New images are then created, in which the resolution is four times higher than the resolution of the original images. Our model has been evaluated with the dataset "DeepScores" and shows that it outperforms other existing methods.

Recognizing Chord Symbols in Printed Korean Musical Images Using Lexicon-Driven Approach

  • Dinh, Minh;Yang, Hyung-Jeong;Lee, Guee-Sang;Kim, Soo-Hyung;Na, In-Seop
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.53-54
    • /
    • 2015
  • Optical music recognition (OMR) systems have been developed in recent years. However, chord symbols that play a role in a music sheet have been still disregarded. Therefore, we aimed to develop a proper approach to recognize these chord symbols. First, we divide the image of chord symbol into small segments in horizontal by a method based on vertical projection. Then, the optimal combination of these segments is found by using a lexicon-driven word scoring technique and a nearest neighbor classifier. The word that corresponds to the optimal combination is the result of recognition. The experiment gives an impressive result with accuracy 97.32%.

  • PDF

A Covariance-matching-based Model for Musical Symbol Recognition

  • Do, Luu-Ngoc;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang;Dinh, Cong Minh
    • Smart Media Journal
    • /
    • v.7 no.2
    • /
    • pp.23-33
    • /
    • 2018
  • A musical sheet is read by optical music recognition (OMR) systems that automatically recognize and reconstruct the read data to convert them into a machine-readable format such as XML so that the music can be played. This process, however, is very challenging due to the large variety of musical styles, symbol notation, and other distortions. In this paper, we present a model for the recognition of musical symbols through the use of a mobile application, whereby a camera is used to capture the input image; therefore, additional difficulties arise due to variations of the illumination and distortions. For our proposed model, we first generate a line adjacency graph (LAG) to remove the staff lines and to perform primitive detection. After symbol segmentation using the primitive information, we use a covariance-matching method to estimate the similarity between every symbol and pre-defined templates. This method generates the three hypotheses with the highest scores for likelihood measurement. We also add a global consistency (time measurements) to verify the three hypotheses in accordance with the structure of the musical sheets; one of the three hypotheses is chosen through a final decision. The results of the experiment show that our proposed method leads to promising results.

A Robust Staff Line Height and Staff Line Space Estimation for the Preprocessing of Music Score Recognition (악보인식 전처리를 위한 강건한 오선 두께와 간격 추정 방법)

  • Na, In-Seop;Kim, Soo-Hyung;Nquyen, Trung Quy
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • In this paper, we propose a robust pre-processing module for camera-based Optical Music Score Recognition (OMR) on mobile device. The captured images likely suffer for recognition from many distortions such as illumination, blur, low resolution, etc. Especially, the complex background music sheets recognition are difficult. Through any symbol recognition system, the staff line height and staff line space are used many times and have a big impact on recognition module. A robust and accurate staff line height and staff line space are essential. Some staff line height and staff line space are proposed for binary image. But in case of complex background music sheet image, the binarization results from common binarization algorithm are not satisfactory. It can cause incorrect staff line height and staff line space estimation. We propose a robust staff line height and staff line space estimation by using run-length encoding technique on edge image. Proposed method is composed of two steps, first step, we conducted the staff line height and staff line space estimation based on edge image using by Sobel operator on image blocks. Each column of edge image is encoded by run-length encoding algorithm Second step, we detect the staff line using by Stable Path algorithm and removal the staff line using by adaptive Line Track Height algorithm which is to track the staff lines positions. The result has shown that robust and accurate estimation is possible even in complex background cases.