• Title/Summary/Keyword: Optical Metrology

Search Result 175, Processing Time 0.021 seconds

Real-time Highly Sensitive Measurement of Myocardial Infarction Biomarkers Using Silicon-based Ellipsometric Biosensors (실리콘 기반 타원편광계식 바이오센서를 이용한 심근경색 생체표지자의 실시간 초고감도 진단 농도 측정)

  • Min, Yoon Gi;Cho, Hyun Mo;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.2
    • /
    • pp.59-66
    • /
    • 2019
  • We report highly sensitive detection of myocardial infarction biomarkers, such as myoglobin and cTnI, within several hundred seconds using a rotating-analyzer ellipsometer and a biosensor with biochips fabricated on a $SiO_2$-coated tilted silicon substrate. We choose the running buffer to be pure phosphate-buffered saline (PBS) or 10% mixed human serum. When we choose the running buffer to be pure PBS, we obtain diagnostic densities of pure myocardial infarction biomarkers of up to 1 ng/ml and 5 pg/ml respectively. Meanwhile, when we use PBS with 10% human serum, the measured densities of myoglobin and cTnI were up to 1 ng/mL and 1 pg/mL respectively. The measured diagnostic densities are less than 1/15 and 1/80 (in cases of myoglobin and cTnI respectively) of those referenced by the World Health Organization.

Generation of Femtosecond Pulses in a Passively Mode-Locked 100 MHz Cr4+:YAG Laser (수동 모드 잠금된 100 MHz Cr4+:YAG 레이저에서의 펨토초 펄스 발생)

  • Cho, Won-Bae;Rotermund Fabian;Kim, Jong-Doo;Jeon, Min-Yong;Suh, Ho-Suhng
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.535-541
    • /
    • 2005
  • We report on the development of a passively mode-locked near-infrared femtosecond laser with Cr:YAG crystal that operates near room temperature. The laser wavelength could easily be tuned by using only the internal prism pair over 110 nm from 1400 nm to 1510 nm in cw and over about 30 nm in mode-locked operation, respectively Maximum cw output powers of 810 mW were obtained with $1.5 \%$ output coupler for absorbed pump powers of 7.6 W. For compensation of the internal group velocity dispersion, an IR graded prism pair was used. The Cr:YAG laser delivered nearly Fourier-transform limited pulses with a pulse duration as short as 64 fs at 100 MHz repetition rate. In the mode-locked regime, the laser was operating at 1510 nm with a spectral bandwidth of 44 nm. In order to avoid unstable mode-locking and power instabilities, self-built tubes were inserted into the beam path in the resonator and purged with N2 gas. Finally, output powers of the Cr:YAG laser were optimized to 250 mW fer long time stable mode-locked operation.

Measurement of Large Mirror Surface using a Laser Tracker (레이저트래커(Laser Tracker)를 이용한 대형 광학 거울의 형상 측정)

  • Jo, Eun-Ha;Yang, Ho-Soon;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.6
    • /
    • pp.331-337
    • /
    • 2013
  • A large optical surface is fabricated by grinding, polishing and figuring. The grinding process is the most rapid and has the largest amount of fabrication of all processes. If we measure the surface precisely and rapidly in the grinding process, it is possible to improve the efficiency of the fabrication process. Since the surface of grinding process is rough and not shiny, it is not easy to measure the surface using light so that we cannot use an interferometer. Therefore, we have to measure the surface using a mechanical method. We can measure the surface under the grinding process by using a laser tracker which is a portable 3-dimensional coordinate measuring machine. In this paper, we used the laser tracker to measure the surface error of 1 m diameter spherical mirror. This measurement result was compared to that of an interferometer. As a result, surface measurement error was found to be $0.2{\mu}m$ rms (root mean square) and $2.7{\mu}m$ PV (Peak to Valley), which is accurate enough to apply to the rough surface under the grinding stage.

Development of Auto-spray system to improve the quality of 3D Scanning Quality (3D 스캔 시 품질향상을 위한 스프레이 도포 자동화 장비 개발)

  • Kim, Wonseop;Jo, Jae Heung;Kim, Dongsu;Kim, Donggyoo;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.100-105
    • /
    • 2016
  • The use of 3D scanners has increased gradually according to increasing 3D printer applications. The precision inspection of car parts or electronic components is an important issue not only in the field of mass production, but also in small-scale production. Recently, 3D scanner equipment efficiency and recognition technology has been improved continuously. On the other hand, the spraying time to prepare 3D scanning is time-consuming and has environmental problems. Therefore, an automatic spray system has been in demand by the manufacturing industry. Automatic spray equipment was newly developed for the preparation of a 3D scanner. In this research, the automatic spray system guarantees uniform spray operation. To determine the optimal spray parameters, various spraying methods, solutions and conditions were tested and compared with the experiments. The preparation time for 3D scanning was reduced to 1/10 compared to the manual spraying time, and indicates the optimal spraying conditions through a comparison of various spray coating conditions.

A method for localization of multiple drones using the acoustic characteristic of the quadcopter (쿼드콥터의 음향 특성을 활용한 다수의 드론 위치 추정법)

  • In-Jee Jung;Wan-Ho Cho;Jeong-Guon Ih
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.351-360
    • /
    • 2024
  • With the increasing use of drone technology, the Unmanned Aerial Vehicle (UAV) is now being utilized in various fields. However, this increased use of drones has resulted in various issues. Due to its small size, the drone is difficult to detect with radar or optical equipment, so acoustical tracking methods have been recently applied. In this paper, a method of localization of multiple drones using the acoustic characteristics of the quadcopter drone is suggested. Because the acoustic characteristics induced by each rotor are differentiated depending on the type of drone and its movement state, the sound source of the drone can be reconstructed by spatially clustering the results of the estimated positions of the blade passing frequency and its harmonic sound source. The reconstructed sound sources are utilized to finally determine the location of multiple-drone sound sources by applying the source localization algorithm. An experiment is conducted to analyze the acoustic characteristics of the test quadcopter drones, and the simulations for three different types of drones are conducted to localize the multiple drones based on the measured acoustic signals. The test result shows that the location of multiple drones can be estimated by utilizing the acoustic characteristics of the drone. Also, one can see that the clarity of the separated drone sound source and the source localization algorithm affect the accuracy of the localization for multiple-drone sound sources.