• 제목/요약/키워드: Optical Loss

검색결과 969건 처리시간 0.033초

자동차 광 네트워크용 POF 광커넥터 최적 접속 조건 연구 (Optimal connection condition study of the plastic optical fiber connector for automobiles)

  • 정은주;김창석;정명영
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.61-68
    • /
    • 2006
  • This paper is to investigate the influence of the endface quality on the loss characteristics of a plastic optical fiber(POF) connector and the stability of new designed sleeve for in-car network service. Using the parameters of the surface roughness and applied load, insertion loss of connector is measured. Endface condition for optimizing the connection is presented by the surface roughness satisfying loss criteria and the stress for minimizing the loss, $R_{rms}=8nm$ and 19 MPa, respectively. By vibration test and dynamic loss measurement, we show the stability of the new designed sleeve.

원형으로 굽은 광도파로의 low bending loss를 위한 trench 구조설계: 원통좌표계 FD-BPM (A Trench Structure for Low Bending Loss of Bent Optical Waveguides)

  • 한영진;김창민
    • 한국광학회지
    • /
    • 제6권4호
    • /
    • pp.373-378
    • /
    • 1995
  • 원통좌표계에서의 FD-BPM(finite difference-beam propagation method)을 이용하여 굽은 광도파로의 bending loss를 계산하였다. Bending loss를 최소화하기 위해 trench구조를 적용하였으며 다음의 세가지 측면에서 해석하였다. 1)trench구조가 없을때 곡률반경에 따른 bending loss, 2)폭과 위치가 일정한 trench구조가 있을때 곡률반경과 굴절율차에 따른 bending loss, 3)trench의 위치가 일정할 때 trench의 폭에 따른 bending loss를 계산하였다.

  • PDF

Nano-structuring of Transparent Materials by Femtosecond Laser Pulses

  • Sohn, Ik-Bu;Lee, Man-Seop;Chung, Jung-Yong;Cho, Sung-Hak
    • Journal of the Optical Society of Korea
    • /
    • 제9권1호
    • /
    • pp.1-5
    • /
    • 2005
  • Using tightly focused femtosecond laser pulses, we produce an optical waveguide and optical devices in transparent materials. This technique has the potential to generate not only channel waveguides, but also three-dimensional optical devices. In this paper, an optical splitter and U-grooves, which are used for fiber alignment, are simultaneously fabricated in a fused silica glass using near-IR femtosecond laser pulses. The fiber aligned optical splitter has a low insertion loss, less than 4㏈, including an intrinsic splitting loss of 3㏈ and excess loss due to the passive alignment of a single-mode fiber. Finally, we demonstrate the utility of the femtosecond laser writing technique by fabricating gratings at the surface and inside the silica glass.

Correlation Between the Optical Performance of the Reflective Polarizer and the Structure of LCD Backlight

  • Yu, Mi-Yeon;Lee, Byung-Woo;Lee, Jeong-Ho;Ko, Jae-Hyeon
    • Journal of the Optical Society of Korea
    • /
    • 제13권2호
    • /
    • pp.256-260
    • /
    • 2009
  • The optical performance of the reflective polarizer was investigated over three kinds of direct-lit backlights and/or different configurations of the optical sheets. The optical gain factor achieved by using the reflective polarizer increased as the diffuse nature of the optical sheet was enhanced, because of the more efficient polarization conversion. In addition, the gain factor decreased substantially in flat-lamp backlights compared to tubular-lamp backlights, which was ascribed to the high loss factor during the polarization recycling process due to the complex structure and large area of flat lamps. All these results suggested that reducing the loss factor of the backlight is very important for efficient polarization conversion and thus high optical gain of the reflective polarizer.

실리콘 광벤치 및 자동 광섬유/필터 정렬시스템을 이용한 극소형 광통신용 Add/Drop 모듈의 설계 제작 및 실험 (Design, Fabrication and Test of the Micro Optical Add/Drop Module Using Silicon Optical Bench and Automatic Optical Fiber/Filter Alignment System)

  • 최두선;박한수;서영호;김성곤;제태진;황경현
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.211-215
    • /
    • 2004
  • Recently, one of remarkable tends in the development of optical communication industry is the miniaturization and integration of products. The alignment system of micro optical module is a key apparatus for the miniaturization of optical module and the development of optical communication parts with high functionality. In this research, we have developed a system capable of automatic alignment of a $30\mu\textrm{m}$-thick film filter and a lensed fiber in order to improve the speed and losses in the optical fiber-to-filter alignment of optical modules. Using the developed automatic alignment system and silicon optical bench, we have measured optical loss and characteristics of the assembled optical add/drop module before packaging $1{\times}1$ OADM optical module. Whole size of add/drop module was less than $5mm{\times}5mm{\times}1mm$. The measured maximum insertion loss was 0.294㏈ that is below 0.3㏈ which is a standard loss of optical module.

Experimental Study of a Power-Over-Fiber Module and Multimode Optical Fiber for a Fishing Camera System

  • Lee, Hyuek Jae;Jung, Gwang S.
    • Current Optics and Photonics
    • /
    • 제1권5호
    • /
    • pp.468-473
    • /
    • 2017
  • We determined the feasibility of a fishing camera system using an optical fiber as the fishing line by testing a power-over-fiber (POF) module and multimode optical fiber. Operation of the remote camera module (RCM) without the battery was preferred because the removal of the charging or battery replacement section enabled a waterproof single-body type design. The average efficiency of the photovoltaic power converter (PPC) in the tested POF module was 32.6% at 820 nm, and thus, a high-power laser of at least 1.27 W was required for operating the developed RCM with an electrical dissipation of 413 mW. Because the optical fiber was wound on a fishing reel, composite loss composed of bending and tensile loss occurred. To mitigate the composite loss, we employed a simple holder that showed an improvement in the composite loss of 0.38 dB to 0.8 dB, which was considerably better than the losses without the holder.

광섬유에 대한 열중성자 효과 연구 (A Study for the Thermal Heutron Effects on Optical Fiber)

  • 김웅기;손석원;이용범;이종민
    • 대한전자공학회논문지
    • /
    • 제27권12호
    • /
    • pp.1900-1905
    • /
    • 1990
  • In this study, the thermal neutron effects on optical fiber are examined theoretically. Also, the induced loss by thermal neutron irradiation in optical fibers is measured at the optical wavelengths of 0.85 and 1.3\ulcorner, respectively, and the results are analyzed. Thermal neutrons cause nuclear reaction with fiber compositions. So secondary ionizing radiations of high energy are generated. Color centers formed by these secondary ionizing rasiations increase transmission loss of optical fiber by absorbing propagating light in fiber core. As a result of experiment, owing to Ge, P, and B doping effects, the induced loss in multimode fibers has been 5 tmes larger than that in single mode fibers at 1.3 \ulcorner wavelengh. In case of multimode fibers, the loss at 0.8 \ulcorner wavelength region more suceptible for radiations has been twice higher than at 1.3\ulcorner.

  • PDF

In-line Variable Optical Attenuator Based on the Bending of the Tapered Single Mode Fiber

  • Kim, Kwang-Taek;Kang, Ji-Hoon;HwangBo, Seung;Im, Kie-Gon
    • Journal of the Optical Society of Korea
    • /
    • 제13권3호
    • /
    • pp.349-353
    • /
    • 2009
  • We propose a simple in-line variable optical attenuator (VOA) based on the bending effect of tapered single mode fibers. The influence of the taper structure and the reflective index of the external medium surrounding the taper region on the bending loss of the tapered fiber have been investigated experimentally. An attenuation range exceeding 35 dB and a very low excess loss of < 0.2 dB at 1550 nm were achieved. The measured polarization dependent loss of the present VOA at the attenuation level of 10 dB, 20 dB, and 30 dB were 0.1 dB, 0.2 dB, and 0.5 dB, respectively.

Quantifying Optical Link Loss of Fiber-to-the-Home Infrastructure

  • Karan Bahadur Bhandari;Bhanu Shrestha;Surendra Shrestha
    • International journal of advanced smart convergence
    • /
    • 제13권3호
    • /
    • pp.48-58
    • /
    • 2024
  • Fiber to the Home (FTTH) technology is among the most advanced broadband services, delivering voice, data, and television through a single optical fiber directly to customer premises, ensuring high-speed and reliable connectivity. The study conducted on Nepal Telecom's FTTH networks involved direct measurements from the optical line terminal to the fiber access point and optical network unit, providing detailed insights into network performance. Using the OptiSystem software, the analysis revealed a link loss of 24.99 dB, a Q-factor of 12.98, and a minimum Bit Error Rate (BER) of 7.31E-39, all within standard limits, which underscores the robustness of the network. The study also identified that the highest contributors to signal loss were connector loss, fiber attenuation, and fusion splices, emphasizing the importance of minimizing these factors to maintain optimal network performance. Overall, these findings highlight the critical aspects of FTTH network design and maintenance, ensuring that service providers can deliver high-quality broadband services to customers.

Performance Analysis of Chained Amplifier Systems for Metropolitan Optical Network Applications

  • Lee, Jong-Hyung;Choi, Byeong-Yoon
    • Journal of information and communication convergence engineering
    • /
    • 제7권3호
    • /
    • pp.377-382
    • /
    • 2009
  • In this paper, theoretical analysis for metropolitan optical networks is performed. First, analytical optical SNR is derived assuming each node consists of an EDFA, an optical filter, an optical switch, and a VOA, and then the relationship between OSNR and BER is studied. In a metropolitan optical network, an optical signal can be dropped to deliver data, and we also studied the effect of drop loss on system performance. When the drop loss is relatively small, the receiver structure of the node can be treated as a preamplifier receiver which is widely used in long-haul systems. In that case, ASE noise from EDFAs is the dominant noise source in the receiver. However, system performance is relatively insensitive to OSNR when the drop loss is significant because of the noise sources in the receiver (thermal and shot noise).