• Title/Summary/Keyword: Optical Glass

Search Result 1,650, Processing Time 0.025 seconds

Nondestructive Examination of Optical Lens by Resonant Ultrasound Spectroscopy (공명초음파 분광법에 의한 광학기기용 렌즈의 비파괴 검사)

  • 김성훈;박상국;김영남;양인영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.257-262
    • /
    • 2004
  • As optical connectors dominate the performance of optical transmitters or receivers, they need an ultra-precise processing and are composed of optical fibers, ferrule and optical glass lenses. Therefore, this study suggests a nondestructive evaluation technique or a system using resonant ultrasound spectroscopy to evaluate flaws in a optical glass lens. It also conducted a nondestructive evaluation for flaws that are commonly found in a optical glass lens and reviewed the results.

  • PDF

The Reliability of Optical Fiber Assembly Using Glass Solder

  • Lee, Jong-Jing;Kang, Hyun-Seo;Koh, Jai-Sang
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.147-151
    • /
    • 2004
  • In this study, an optical fiber assembly directly coupled with a laser diode or a photo diode is designed to confirm high reliable optical coupling efficiency of optical transmitter(Tx) and receiver(Rx). The optical fiber assembly is fabricated by soldering an optical fiber and a Kovar ferrule using a glass solder after inserting an optical fiber through a Kovar ferrule. The Kovar which has good welding characteristics is applied to introduce laser welding technique. The glass solder has excellent thermal characteristics such as thermal shift delamination compared with PbSn, AuSn solder previously used usually. Furthermore, the glass solder doesn't need fiber metalization and this enables low cost fabrication. However, the glass soldering is high temperature process over 35$0^{\circ}C$ and the convex shape after solidification due to surface tension causes the stress concentration on optical fiber. The stress concentration on the optical fiber increases the optical insertion loss and possibility of crack formation. The shape of glass solder was designed referring to 2-D Axi-symmetric FEM simulation. To test the mechanical reliability, mechanical vibration test and shock test were done according to Telcorida GR-468-Core protocol. After each test, the optical loss of the stress distributed fiber assembly didn't exceed 0.5 dB, which passes the test.

  • PDF

A Study on the Optical communication part Lid glass manufacture technology by high temperature and compression molding (광통신 부품 Lid glass 고온압축성형의 관한 연구)

  • Jang, K.C.;Lee, D.G.;Jang, H.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1526-1531
    • /
    • 2007
  • Data transmission capacity that is required in 2010 is forecasted that increase by optical communication capacity more than present centuple, and is doing increased demand of optical communication related industry product present. Specially, Lid glass' application that is one of optical communication parts is used in optical communication parts manufacture of Fiber array, Ferrule array, Fanout Black, Silica optical waveguide chip and splitter etc. Also, it is used widely for communication network system, CATV, ATM-PON, FTTH and system. But, Lid glass need much processing times and becomes cause in rising prices of optical communication parts because production cost is expensive. The objectives, of this work is to suggest the micro concave and convex pattern manufacturing technology on borosilicate plate using high temperature and compression molding method. As a result, could developed micro pattern Mold more than 5 pattern, and reduce Lid Glass manufacture cycle time.

  • PDF

Molding of glass micro optical components (유리 마이크로 광부품 어레이의 성형)

  • 최우재;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.76-79
    • /
    • 2003
  • Glass molding is an advantageous method to manufacture glass micro optical components. However, it is difficult to make tungsten carbide core for glass molded micro optics way. We have developed novel method to fabricate tungsten carbide core for glass molding of glass micro optical components. Silicon masters were fabricated by micro machining. Tungsten Carbide cores were fabricated by forming, sintering and coating. Finally we fabricated glass molded V-groove with pitch of 192$\mu\textrm{m}$ and glass microlens way with lens diameter of 36∼225$\mu\textrm{m}$ by the present method.

  • PDF

Electrical Relaxation in Silica Glasses and Nonlinearity in Electrical Conductivity (실리카 유리의 전기이완 특성과 비선형적 전기전도도)

  • 신동욱
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.923-929
    • /
    • 1999
  • The cause of optical nonlinearity induced in thermally poled silica glass is believed to be the space charge polarization. Since the second order optical nonlinearity (electro-optic effect) can be used in optical switches the optical nonlinearity in silica glass has drawn a large attention. Space charge polarization occurs when an ionic conducting material is subjected to dc electric field by the blocking electrode. Thermal poling performed to induce the optical nonlinearity in silica glass is basically identical to the process generating space charge polarization. As a first step to understand the mechanism of space charge polarization in silica glass hence the induced optical nonlinearity the absorption currents as functions of time were measured for various types of silica glasses and analyzed by the theory of space charge polarization. It was found that the electrical relaxation exhibited a step by the space charge polarization in the relatively long time range and dielectric loss peak showed a maximum at a specific temperature which is depending on type of silica glass. It was turned out that this relaxation might be a cause of nonlinearity in electrical conductivity of silica glass.

  • PDF

A Study on the Aspheric Glass tens Forming Analysis in the Progressive GMP Process

  • Chang, Sung-Ho;Lee, Young-Min;Shin, Kwang-Ho;Heo, Young-Moo
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.85-92
    • /
    • 2007
  • In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric glass lenses requiring high accuracy and having complex profile was rather difficult. In such a background, the high-precision optical glass molding pressing (GMP) process was developed with an eye to mass production of precision optical glass parts by molding press. In this paper, as a fundamental research to develop the multi-cavity mold for higher productivity of a progressive GMP process used in the fabrication of an aspheric glass lens, an aspheric glass lens forming simulation was carried out.

Finite Element Analysis of Glass Lens Forming Process Using Open Die (개방형 금형을 이용한 유리 렌즈 성형 해석)

  • 나진욱;임성한;전병희;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.143-147
    • /
    • 2003
  • Despite of outstanding optical performance of glass lens, glass lens have not been widely used because of poor productivity and high cost due to manufacturing process i.e. grinding, polishing. However, press-forming method of glass lens overcomes this disadvantage because of mass production. When glass lens is produced by press-forming method using closed die, it is needed that the volume of glass lens preform precisely measured in order to prevent incomplete products and to increase in life of die. The present paper shows the shortcoming of forming process with closed die, and performs FEM simulation of forming process with open die in order to overcome this shortcoming. The design parameter of open die is selected in standard of assembly with optical module and maintenance of optical performance. FEM simulation is carried out with selected parameter of open die and two basic preform. According to distribution of effective strain in glass lens, optical property of glass lens formed at each set of die and preform is compared.

  • PDF

Design and Fabrication of Low Cost Infrared Optical System Using Precision Glass Molding Lens Made by Chalcogenide Glass (칼코게나이드 유리 소재의 PGM 가공 렌즈를 사용한 저가의 적외선 광학계 설계와 제작)

  • Oh, Seung Eun;Lee, Sun Kyu;Choi, Joong Kyu;Song, Kook Hyun;Baek, Jong Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.154-158
    • /
    • 2012
  • In this paper, for low cost infrared optical equipment, we design and fabricate an infrared optical system for an uncooled detector using PGM(Precision Glass Molding) lenses. The designed infrared optical system has a good athermalization, and the material of all of its lenses is a chalcogenide glass suitable for the PGM method. In addition, we also fabricate the same infrared optical system using SPDT(Single Point Diamond Turning) lenses in order to measure the optical performance of PGM lenses. We measure the MTF(Modulation Transfer Function) of the two infrared optical systems which use the PGM lenses and the SPDT lenses. And then we compare and analyze the images of them both. As a result, we find that they have only a very small difference in optical performance. If the use of PGM lenses increases, we expect to reduce the cost of infrared optical equipment.

Radiation parameterizations and optical characterizations for glass shielding composed of SLS waste glass and lead-free materials

  • Thair Hussein Khazaalah;Iskandar Shahrim Mustafa ;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4708-4714
    • /
    • 2022
  • The novelty in the present search, the Soda-Lime-Silica (SLS) glass waste to prepare free lead glass shielding was used in order to limit the accumulation of glass waste, which requires extensive time to decompose. This also saves on the consumption of pure SiO2, which is a finite resource. Furthermore, the combining of BaO with Bi2O3 into a glass network leads to increased optical properties and improved attenuation. The UV-Visible Spectrophotometer was used to investigate the optical properties and the radiation shielding properties were reported for current glass samples utilizing the PhysX/PDS online software. The optical property results indicate that when BaO content increases in glass structure, the Urbach energy ΔE, and refractive index n increases while the energy optical band gap Eopt decreases. The result of the metallisation criteria (M) revealed that the present glass samples are nonmetallic (insulators). Furthermore, the radiation shielding parameter findings suggest that when BaO was increased in the glass structure, the linear attenuation coefficient and effective atomic number (Zeff) rose. But the half-value layer HVL declined as the BaO concentration grew. According to the research, the glass samples are non-toxic, transparent to visible light, and efficient radiation shielding materials. The Ba5 sample is considered the best among all the samples due to its higher attenuation value and lower HVL and MFP values, which make it a suitable candidate as transparent glass shield shielding.

Development of Sealing Technology for Far-Infrared Multispectral ZnS Using Chalcogenide Glass Material

  • Soyoung Kim;Jung-Hwan In;Karam Han;Yoon Hee Nam;Seon Hoon Kim;Ju Hyeon Choi
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.515-521
    • /
    • 2022
  • Various types of optical materials and devices used in special environments must satisfy durability and optical properties. In order to improve the durability of zinc sulfide multispectral (MS ZnS) substrates with transmission wavelengths from visible to infrared, Ge-Sb-Se-based chalcogenide glass was used as a sealing material to bond the MS ZnS substrates. Wetting tests of the Ge-Sb-Se-based chalcogenide glass were conducted to analyze flowability as a function of temperature, by considering the glass transition temperature (Tg) and softening temperature (Ts). In the wetting test, the viscous flow of the chalcogenide glass sample was analyzed according to the temperature. After placing the chalcogenide glass disk between MS ZnS substrates (20 × 30 mm), the sealing test was performed at a temperature of 485 ℃ for 60 min. Notably, it was found that the Ge-Sb-Se-based chalcogenide glass sealed the MS ZnS substrates well. After the MS ZnS substrates were sealed with chalcogenide glass, they showed a transmission of 55 % over 3~12 ㎛. The tensile strength of the sealed MS ZnS substrates with Ge-Sb-Se-based chalcogenide glass was analyzed by applying a maximum load of about 240 N, confirming its suitability as a sealing material in the far infrared range.