• Title/Summary/Keyword: Optical Fourier transform

Search Result 268, Processing Time 0.021 seconds

Fourier-Plane Encryption System using Divided Images and a Joint Transform Correlator (분할 영상과 결합변환 상관기를 이용한 주파수 영역에서의 광 암호화 시스템 구현)

  • 최상규;신창목;서동환;김수중;배장근
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.58-59
    • /
    • 2003
  • We propose the optical encryption system using two divided image to hide the original image and a joint transform correlator. The encryption procedure is performed by the Fourier transform of the product of each phase encoded image (divided phase images) and the same random phase image which is generated by computer processing. An autocorrelation term of joint transform correlator contributes to decrypt the original image. This system will be used in optical certification.

  • PDF

Design of diffractive pattern elements using two-stage iterative Fourier transform algorithm (2 단계 iterative Fourier transform 알고리즘을 이용한 회절 무늬 소자의 설계에 관한 연구)

  • 정필호;조두진
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.296-297
    • /
    • 2000
  • 프라운호퍼 회절에 의하여 주어진 세기 무늬를 발생시키는 회절광학소자(Diffractive Optical Element, DOE)는 회절무늬소자, 키노폼(kinoform), 컴퓨터 푸리에 홀로그램 (computer-generated Fourier hologram) 등으로 불리우며, 광정보처리, 광연결, 레이저가공에서 중요한 역할을 한다. 이 소자를 설계하는 매우 다양한 방법들이 제안되었는데, iterative Fourier transform 알고리즘(IFTA)과 이를 변형한 알고리즘들이 가장 널리 사용된다. IFTA는 fast Fourier transform(FFT)를 활용하므로 계산시간이 절감되지만 국소 최소점에 고착되는 stagnation문제가 있어 이를 해결하기 위한 많은 변형된 알고리즘들이 제안되었다. 본 연구에서는 최근에 제안한 new Pnoise algorithm with hybrid input-output algorithm(NPA-HIOA)$^{(1)}$ 의 설계 성능을 IFTA, hybrid input-output 알고리즘(HIOA), new Pnoise 알고리즘(NPA)$^{(2)}$ , Nonlinear Least-Square (NLS)$^{(3)}$ 등의 기존의 알고리즘들과 비교하고자 한다. (중략)

  • PDF

Retrieving Phase from Single Interferogram with Spatial Carrier Frequency by Using Morlet Wavelet

  • Hongxin Zhang;Mengyuan Cui
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.529-536
    • /
    • 2023
  • The Morlet wavelet transform method is proposed to analyze a single interferogram with spatial carrier frequency that is captured by an optical interferometer. The method can retain low frequency components that contain the phase information of a measured optical surface, and remove high frequency disturbances by wavelet decomposition and reconstruction. The key to retrieving the phases from the low-frequency wavelet components is to extract wavelet ridges by calculating the maximum value of the wavelet transform amplitude. Afterwards, the wrapped phases can be accurately solved by multiple iterative calculations on wavelet ridges. Finally, we can reconstruct the wave-front of the measured optical element by applying two-dimensional discrete cosine transform to those wrapped phases. Morlet wavelet transform does not need to remove the spatial carrier frequency components manually in the processing of interferogram analysis, but the step is necessary in the Fourier transform algorithm. So, the Morlet wavelet simplifies the process of the analysis of interference fringe patterns compared to Fourier transform. Consequently, wavelet transform is more suitable for automated programming analysis of interference fringes and avoiding the introduction of additional errors compared with Fourier transform.

Planar Waveguide Devices for Communication and Sensing Applications

  • Okamoto, Katsunari
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.290-297
    • /
    • 2010
  • The paper reviews progress and future prospects of two kinds of planar waveguide devices; they are (a) silica and silicon photonics multi/demultiplexers for communications and signal processing applications, and (b) a novel waveguide spectrometer based on Fourier transform spectroscopy for sensing applications.

Spectral Reconstruction for High Spectral Resolution in a Static Modulated Fourier-transform Spectrometer

  • Cho, Ju Yong;Lee, Seunghoon;Kim, Hyoungjin;Jang, Won Kweon
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.244-251
    • /
    • 2022
  • We introduce a spectral reconstruction method to enhance the spectral resolution in a static modulated Fourier-transform spectrometer. The optical-path difference and the interferogram in the focal plane, as well as the relationship of the interferogram and the spectrum, are discussed. Additionally, for better spectral reconstruction, applications of phase-error correction and apodization are considered. As a result, the transfer function of the spectrometer is calculated, and then the spectrum is reconstructed based on the relationship between the transfer function and the interferogram. The spectrometer comprises a modified Sagnac interferometer. The spectral reconstruction is conducted with a source with central wave number of 6,451 cm-1 and spectral width of 337 cm-1. In a conventional Fourier-transform method the best spectral resolution is 27 cm-1, but by means of the spectral reconstruction method the spectral resolution improved to 8.7 cm-1, without changing the interferometric structure. Compared to a conventional Fourier-transform method, the spectral width in the reconstructed spectrum is narrower by 20 cm-1, and closer to the reference spectrum. The proposed method allows high performance for static modulated Fourier-transform spectrometers.

Study on critical point of ZnCdSe by using Fourier analysis (Fourier 변환을 이용한 ZnCdSe 전이점 연구)

  • Yoon, J.J.;Ghong, T.H.;Kim, Y.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.458-462
    • /
    • 2007
  • Spectroscopic ellipsometry is an excellent technique for determining dielectric function. To obtain critical point energy, standard analytic critical point expression is used conventionally for second derivatives of dielectric function which might increase high frequency noise than signal. However, reciprocal-space analysis offers several advantages for determining critical point parameters in optical and other spectra, for example the separation of baseline, information, and high frequency noise in low-, medium-, high-index Fourier coefficient, respectively. We used reciprocal Fourier analysis for removing noise and determining critical point of ZnCdSe alloy.

Improvement of reconstructed image from computer generated psuedo holograms using iterative method

  • Sakanaka, Kouta;Tanaka, Kenichi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.578-582
    • /
    • 2009
  • Computer-Generated Hologram (CGH) is generally made by Fourier Transform. CGH is made by an optical reconstruction. Computer-Generated Pseudo Hologram (CGPH) is made up Complex Hadamard Transform instead of CGH which is made by the Fourier Transform. CGPH differs from CGH in point of view the possibility of optical reconstruction. There is an advantage that it cannot be optical reconstruction, in other word, physical leakage of the confidential information is impossible. In this paper, a binary image was converted in Complex Hadamard Transform, and CGPH was made. Improvement of the reconstructed image from CGPH is done by error diffusion method and iterative method. The result that the reconstructed image is improved is shown.

  • PDF