• 제목/요약/키워드: Optical Element

검색결과 681건 처리시간 0.041초

MAGNETOSPHERIC STRUCTURE OF THE INTERMEDIATE POLAR

  • Kim, Yong-Gi
    • Journal of Astronomy and Space Sciences
    • /
    • 제11권1호
    • /
    • pp.1-12
    • /
    • 1994
  • The structure of the magnetic funnel element in the intermediate polar is considered in terms of an important site for the X-ray absorption and the reemission of the X-ray as the optical light. In this paper the column density and the optical depth vary with the filling factor, which is introduced to characterize the structure of matter in the magnetic funnel element. The results of the energy dependence of the X-ray spectrum and the modulation depth of the X-ray light curve are discussed.

  • PDF

Finite-element modeling and analysis of time-dependent thermomechanical distortion of optical sheets in a LCD module

  • Lee, Jae-Won;Hwang, Hak-Mo;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1436-1441
    • /
    • 2006
  • Each type of optical sheets in a LCD module experiences a characteristic behavior for thermal loading and unloading. During thermal cycling, a polymeric behavior is reversible and recyclable, depending on a material stiffness critically affected by temperature and time. Some critical issues on temperature- and time-dependent themomechanical deformation of the polymeric sheet are addressed by finite-element thermal results, followed by structural simulation results in this study.

  • PDF

Band Structure Analysis of Strained Quantum Wire Arrays

  • Yi, Jong-Chang;Ji, Jeong-Beom
    • Journal of the Optical Society of Korea
    • /
    • 제7권1호
    • /
    • pp.7-12
    • /
    • 2003
  • A numerical approach for the analysis of quantum wire structures has been presented using a finite-element method which includes the strain analysis and the band analysis of the Luttinger-Kohn Hamiltonian with the deformation potential. A systematic implementation of the multiband Hamiltonian in the finite-element scheme is outlined and the corresponding variational functional is derived for arbitrarily shaped strained quantum wire arrays. This method is then applied to calculate the band structures of strained quantum wire arrays.

FINITE-ELEMENT METHOD FOR THE IMPEDANCE ANALYSIS OF TRAVELING-WAVE MODULATORS

  • JONG CHANG YI
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1989년도 제4회 파동 및 레이저 학술발표회 4th Conference on Waves and lasers 논문집 - 한국광학회
    • /
    • pp.165-168
    • /
    • 1989
  • A finite-element method is developed to calculate the impedance of arbitrarily shaped electrodes on traveling-wave modulators. This method employs the divergence theorem to obtain the total charge on an electrode from the node potential values. By using this method, the impedance of multi strip-line electrodes on anisotropic inhomogeneous dielectric media was analysed and the effect of non-zero electrode thickness was calculated.

  • PDF

광소자 정렬용 극초정밀 다축 스테이지의 구동 메커니즘에 관한 연구 (A Study on the Motion Mechanism of Multi-Axis Ultra Precision Stage for Optical Element Alignment)

  • 정상화;김광호;차경래;이경형;송석
    • 한국공작기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.8-16
    • /
    • 2006
  • The communication through optical fiber is taking an important role of the expansion of communication network with excellent transmitting rate and quality. As the optical communication is introduced to the backbone network at first and becomes a general communication method of network, the demand of kernel parts of optical communication such as PLC(Planar Light Circuit), Coupler, and WDM(Wavelength Division Multiplexing) element increases. The alignment and the attachment technology are very important in the fabrication of optical elements. In this paper, the driving mechanism of ultra precision stage is studied with the aim of optimal design of stage. The travel and the resolution of stage are investigated. The hysteresis of the stage is generated because of PZT actuator. The hysteresis and the inverse hysteresis are modeled in X, Y, and Z-axis motion. The input data of desired displacement of the stage according to input voltage is obtained from the inverse hysteresis equation. In the result of experiments with the input data, the errors due to hysteresis are well compensated.

Stress Profile Dependence of the Optical Properties in Strained Quantum Wire Arrays

  • Yi, Jong-Chang;Ji, Jeong-Beom
    • Journal of the Optical Society of Korea
    • /
    • 제7권1호
    • /
    • pp.13-19
    • /
    • 2003
  • The effects of strain distribution in quantum wire arrays have been analyzed using a finite-element method including both the hydrostatic and shear strain components. Their effects on the optical properties of the quantum wire arrays are assessed for various types of stress profiles by calculating the optical gain and the polarization dependence. The results show unique polarization dependency, which can be exploited either for the single polarization or the polarization-independent operation in quantum wire photonic devices.

비공유 Node를 이용한 대구경 거울의 효율적인 유한요소 모델링 (Effective Finite Element Modeling for a Large Mirror System Using Separated Node Connectivity)

  • 편재원;양호순;이종웅;문일권
    • 한국광학회지
    • /
    • 제28권6호
    • /
    • pp.304-313
    • /
    • 2017
  • 대구경 거울과 이를 지지하는 flexure로 구성된 반사경 시스템의 최적화를 위하여 수행하는 유한요소 해석은 주어진 설계 조건을 만족하기 위하여 수많은 반복적인 계산과 실제 모델의 수정 작업이 필수적이다. 일반적으로 실제 모델의 수정은 node의 재설정과 새로이 구성된 각 부품의 경계면에서 node의 연속성을 맞추는 작업에 많은 시간이 소요되며 이는 유한요소 해석에 소요되는 시간 결정에 매우 중요한 요소가 된다. 모델링과 계산에 소요되는 시간을 절약하기 위하여 각 광학적 구성요소의 경계면에서 비공유 node 연결을 활용하는 새로운 광기계 해석을 제안하고자 한다. 새 모델링 기법에 의하여 계산된 광기계 해석과 경계면에서의 공유 node를 사용하는 기존의 광기계 해석을 비교하여, 계산에 의하여 얻어진 광기계적 성능은 거의 같았고, 주어진 조건에 도달하기 위한 계산 시간은 획기적으로 줄어드는 것을 확인할 수 있었다.

광소자 정렬용 극초정밀 다축 위치 조정장치의 운동특성에 관한 연구 (A Study on The Motion Charateristic of Ultra Precision Multi-Axis Stage for Optical Element Alignment)

  • 정상화;차경래;김현욱;최석봉;김광호;박준호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1219-1222
    • /
    • 2005
  • As the optical communication is introduced to the backbone network at first and becomes a general communication method of network, the demand of kernel parts of optical communication such as PLC(Planar Light Circuit), Coupler, and WDM(Wavelength Division Multiplexing) element increases. The alignment and the attachment technology are very important in the fabrication of optical elements. In this paper, the driving mechanism of ultra precision stage is studied with the aim of optimal design of stage. The travel and the resolution of stage are investigated. The hysteresis of the stage is generated because of PZT actuator. The hysteresis and the inverse hysteresis are modeled in X, Y, and Z-axis motion. The input data of desired displacement to the stage according to input voltage is obtained from the inverse hysteresis equation. In the result of experiments with the input data, the errors due to hysteresis are well compensated.

  • PDF

Optical Design of the DOTIFS Spectrograph

  • 정하은
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.100.2-100.2
    • /
    • 2014
  • The DOTIFS is a new multi-object Integral Field Spectrograph (IFS) planned to be designed and built by the Inter-University Center for Astronomy and Astrophysics, Pune, India, (IUCAA) for cassegrain side port of the 3.6m Devasthal Optical Telescope (DOT) being constructed by the Aryabhatta Research Institute of Observational Sciences, Nainital. (ARIES) It is a multi-integral field unit (IFU) spectrograph which has 370-740nm wavelength coverage with spectral resolution R~1200-2400. Sixteen IFUs with microlens arrays and fibers can be deployed on 8 arcmin field. Each IFU has $8.7^{{\prime}{\prime}}{\times}7.4^{{\prime}{\prime}}$ field of view with 144 spaxel elements. 2304 fibers coming from IFUs are dispersed by eight identical spectrographs with all refractive and all spherical optics. In this work, we show optical design of the DOTIFS spectrograph. Expected performance and result of tolerance and thermal analysis are also shown. The optics is comprised of f=520mm collimator, broadband filter, dispersion element and f=195mm camera. Pupil size is determined as 130mm from spectral resolution and budget requirements. To maintain good transmission down to 370nm, calcium fluoride elements and high transmission optical glasses have been used. Volume Phase Holographic grating is selected as a dispersion element to maximize the grating efficiency and to minimize the size of the optics. Detailed optics design report had been documented. The design was finalized through optical design review and now ready for order optics.

  • PDF