• Title/Summary/Keyword: Optic Receiver

Search Result 50, Processing Time 0.022 seconds

Between Invention and Discovery: A. G. Bell's Photophone and Photoacoustic Research (발명과 발견의 사이에서: 앨릭잰더 그레이엄 벨의 포토폰과 광음향학 연구)

  • Ku, Ja-Hyon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.73-78
    • /
    • 2012
  • The photophone, Alexander Graham Bell's device for transmitting sound through light was patented in 1880. It included the transmitter modulating and reflecting strong light like sunlight to a distant receiver which produced sound. In this working of the photophone, the discovery of the sound-emitting effect under illumination was very essential. Longing for being famous in the scientific community, Bell focused on presenting various methods for producing sounds and for maximizing the loudness by performing intensive research on the photoacoustic effect. Bell's scientific research on photoacoustics was successful in establishing himself as a scientist and laid a foundation of photoacoustic analysis. And his invention became a basis for other researchers' subsequent technologies like fiber-optic communication.

A Near Range Sensing Device Using Active Laser Diodes (능동레이저 근거리 감지센서)

  • Kim, Ung-Sik;Kang, Byoung-Moo;Kim, Wan-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2336-2338
    • /
    • 1998
  • This paper describes an active laser sensing device using laser diodes and optic devices. It is able to detect near targets existed in $360^{\circ}$ directions simultaneously with effectiveness and reliability. This sensing device consists of four laser transmitters and four receivers. Only four transmitter/receiver channels of this near range sensing device are capable of $360^{\circ}$ coverage. The usefulness of this sensing device is confirmed through some experiments for the mock-up targets.

  • PDF

Fabrication and Operating of 155.52 Mbps CMOS Receiver for Fiber Optic Modules (광통신 모듈용 155.52 Mbps CMOS 리시버제작 및 구현)

  • 이길재;채상훈
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.199-202
    • /
    • 2000
  • STM-1 체계의 광통신 수신부 광모듈에 내장하기 위한 155.52 Mbps 리시버 ASIC을 0.65 ㎛ 실리콘 CMOS 기술을 이용하여 설계 제작하였다. 재작된 ASIC은 155.52 Mbps 데이터신호 재정형을 위한 제한 증폭기와 155.52 MHz 클럭을 추출하기 위한 클럭 추출 회로를 주축으로 구성되어 있다. 또한 이 리시버는 전원이 켜지는 초기 동사 상태에서나 동작 도중 데이터신호가 입력되지 않더라도 155.52 MHz 부근의 클럭주파수를 유지하여 항상 안정된 동작을 할 수 있게 하기 위한 수렴 보조 회로 및 LOS 감지 회로도 내장하고 있다. 측정 결과 설계된 리시버는 1 mV- 1 V의 넓은 입력 전압에 걸쳐 데이터 재정형이 이루어지며, 155.52 MHz의 안정된 클럭을 추출하고 있음을 알 수 있었다.

A Effect of Frequency Response Effect of Butter-Worth Filter on Optical Receive System (광 수신시스템에서 버터워쓰필터의 주파수 응답 효과에 관한 영향)

  • Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.25-31
    • /
    • 2020
  • In an optical system that serves as the backbone of an information transmission system, it is essential to evaluate the statistical characteristics of the signal and noise for a performance evaluation and optimization of the system. The optical receiver system improves the reception sensitivity by adopting an optical amplifier in front of the optical detector to improve the reception sensitivity, but some problems change the bandwidth of the electronic signal to the optical signal in the optical receiver due to the ASE noise added to the output of the optical detector. The problem of changing the ratio of the bandwidth of these signals varies according to the passband characteristics of the filter present at the output stage. The frequency response effect can be solved by constructing an infinite order filter, but it is almost impossible to implement it. In this paper, the Butterworth filter was implemented to evaluate the frequency response characteristics of an optical receiver system according to the filter order. The simulation results showed that the receiver sensitivity increases as the order of Butter-Worth filters increases. In addition, as a result of simulation of the change of various values, it was confirmed that the reception sensitivity increased with increasing. That is, the average photocurrent increases, and the dispersion decreases with increasing.

Design of a Single Chip CMOS Transceiver for the Fiber Optic Modules (광통신 모듈용 단일칩 CMOS 트랜시버의 설계)

  • 채상훈;김태련;권광호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • This paper describes the design of monolithic optical transceiver circuitry being used as a part of the fiber optic modules. It has been designed in 0.6 ${\mu}{\textrm}{m}$ 2-poly 3 metal silicon CMOS analog technology and operates at 155.52 Mbps(STM-1) data rates. It drives laser diode to transmit intensity modulated optical signal according to 155.52 Mbps electrical data from system. Also, it receives 155.52 Mbps optical data that transmitted from other systems and converts it to electrical data using photo diode and amplifier. To avoid noise and interference between transmitter and receiver on one chip, layout techniques such as special placement, power supply separation, guard ring, and protection wall were used in the design. The die area is 4 ${\times}$ 4 $\textrm{mm}^2$ and the estimated power dissipation is less than 900 ㎽ with a single 5 V supply.

Implementation of a Single Chip CMOS Transceiver for the Fiber Optic Modules (광통신 모듈용 단일 칩 CMOS트랜시버의 구현)

  • 채상훈;김태련
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.11-17
    • /
    • 2004
  • This paper describes the implementation of monolithic optical transceiver circuitry being used as a part of the fiber optic modules. It has been fabricated in 0.6 ${\mu}{\textrm}{m}$ 2-poly 3-metal silicon CMOS analog technology and operates at 155.52 Mbps(STM-1) data rates. It drives laser diode to transmit intensity modulated optical signal according to 155.52 Mbps electrical data from system. Also, it receives 155.52 Mbps optical data that transmitted from other systems and converts it to electrical data using photo diode and amplifier. To avoid noise and interference between transmitter and receiver on one chip, layout techniques such as special placement, power supply separation, guard ring, and protection wall were used in the design. The die area is 4 ${\times}$ 4 $\textrm{mm}^2$, and it has 32.3 ps rms and 335.9 ps peak to peak jitter on loopback testing. the measured power dissipation of whole chip is 1.15 W(230 mW) with a single 5 V supply.

Correlation between Optic Nerve Sheath Diameter Measured by Computed Tomography and Elevated Intracranial Pressure in Patients with Traumatic Brain Injury

  • Lim, Tae Kyoo;Yu, Byug Chul;Ma, Dae Sung;Lee, Gil Jae;Lee, Min A;Hyun, Sung Yeol;Jeon, Yang Bin;Choi, Kang Kook
    • Journal of Trauma and Injury
    • /
    • v.30 no.4
    • /
    • pp.140-144
    • /
    • 2017
  • Purpose: The optic nerve sheath diameter (ONSD) measured by ultrasonography is among the indicators of intracranial pressure (ICP) elevation. However, whether ONSD measurement is useful for initial treatment remains controversial. Thus, this study aimed to investigate the relationship between ONSD measured by computed tomography (CT) and ICP in patients with traumatic brain injury (TBI). Methods: A total of 246 patients with severe trauma from January 1, 2015 until December 31, 2015 were included in the study. A total of 179 patients with brain damage with potential for ICP elevation were included in the TBI group. The remaining 67 patients comprised the non-TBI group. A comparison was made between the two groups. Receiver operating characteristic (ROC) curve analysis was performed to determine the accuracy of ONSD when used as a screening test for the TBI group including those with TBI with midline shift (with elevated ICP). Results: The mean injury severity score (ISS) and glasgow coma scale (GCS) of all patients were $24.2{\pm}6.1$ and $5.4{\pm}0.8$, respectively. The mean ONSD of the TBI group ($5.5{\pm}1.0mm$) was higher than that of the non-TBI group ($4.7{\pm}0.6mm$). Some significant differences in age ($55.3{\pm}18.1$ vs. $49.0{\pm}14.8$, p<0.001), GCS ($11.7{\pm}4.1$ versus $13.3{\pm}3.0$, p<0.001), and ONSD ($5.5{\pm}1.0$ vs. $4.7{\pm}0.6$, p<0.001) were observed between the TBI and the non-TBI group. An ROC analysis was used to assess the correlation between TBI and ONSD. Results showed an area under the ROC curve (AUC) value of 0.752. The same analysis was used in the TBI with midline shift group, which showed an AUC of 0.912. Conclusions: An ONSD of >5.5 mm, measured on CT, is a good indicator of ICP elevation. However, since an ONSD is not sensitive enough to detect an increased ICP, it should only be used as one of the parameters in detecting ICP along with other screening tests.

The Research on SMSR Yield Improvement of the Optical Transceiver Using Modulated DFB Laser (변조된 DFB 레이저를 이용한 광 송수신기의 SMSR 수율 향상에 관한 연구)

  • Kwon, Yoon-Koo;Kim, Chang-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2285-2290
    • /
    • 2011
  • This paper is the research on SMSR yield improvement of the optical transceiver using modulated DFB laser. In general, the wavelength of DFB laser optical transceiver are 1310, 1490 and 1550 nm. Usually SMSR in modulated DFB is difficult to improve as low as 30 dB because of high slop efficiency trade off. In modulation condition, we studied SMSR improvement according to adjust bias current, extinction ratio and optical line terminal receiver sensitivity. As our test results, we can found a method how to improve SMSR for optical transceiver for long distance.

Design of the Transceiver for a Wide-Range FMCW Radar Altimeter Based on an Optical Delay Line (광 지연선 기반의 넓은 고도 범위를 갖는 고정밀 FMCW 전파고도계 송수신기 설계)

  • Choi, Jae-Hyun;Jang, Jong-Hun;Roh, Jin-Eep
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1190-1196
    • /
    • 2014
  • This paper presents the design of a Frequency Modulated Continuous Wave(FMCW) radar altimeter with wide altitude range and low measurement errors. Wide altitude range is achieved by employing the optic delay in the transmitting path to reduce the dynamic range of measuring altitude. Transmitting power and receiver gain are also controlled to have the dynamic range of the received power be reduced. In addition, low measurement errors are obtained by improving the sweep linearity using the Direct Digital Synthesizer(DDS) and minimizing the phase noise employing the reference clock(Ref_CLK) as the offset frequency of the Phase Locked Loop(PLL).

A possible non-contact measuring technique for the variation of the electric field due to corona discharge by use of Pockels sensor (포켈스센서를 이용한 코로나방전 발생시의 전계변화 측정에 관한 연구)

  • Ma, Ji-Hoon;Kang, Won-Jong;Lim, Yun-Sok;Choi, Jae-Ok;Chang, Yong-Moo;Koo, Ja-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.189-192
    • /
    • 2001
  • In this paper, an novel optical measuring system based on the electro-optic effect has been proposed and realized using Pockels cell with a view to detecting partial discharge taking place at the needle plane electrode. This system has the following advantages ; nonmetallic probe sensor, immune to external EMI noise and broad band response of the Pockels cell from DC to GHz. This system is constructed by He-Ne laser, Mach-Zehnder interferometer with Pockels sensor, balanced photo receiver, data acquisition board and PC. The response characteristics of the developed proto type sensor are examined for AC and corona discharge.

  • PDF