• Title/Summary/Keyword: Operational fault

Search Result 214, Processing Time 0.025 seconds

Analysis of Operational Characteristics of Separated Three-Phase Flux-Lock SFCL (삼상 분리형 자속구속형 전류제한기의 동작 특성 분석)

  • Doo, Seung-Gyu;Du, Ho-Ik;Park, Chung-Ryul;Kim, Min-Ju;Kim, Yong-Jin;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.289-289
    • /
    • 2008
  • We investigated the operational characteristics of the separated three-phase flux-lock type superconducting fault current limiter (SFCL). The single-phase lock type SFCL consist of two coils, which are wound in parallel through an iron core. The high-$T_c$ superconducting(HSTC) thin film connected in series with secondary coil. The separated three-phase flux-lock type SFCL consist of three single-phase flux-lock type SFCL. In a normal condition, the SFCL is not operate. When a fault occurs, the current of a HSTC thin film exceeds its critical current by fault current, the resistance of the HSTC thin film generated. Therefore fault current was limited by SFCL. The separated three-phase flux-lock type SFCL are operated in fault condition such as the the single line-to-ground fault, the double line-to-ground fault and the triple line-to-ground fault. The experimental results, the SFCL operational characteristics was dependent on fault condition.

  • PDF

Diagnosing the Cause of Operational Faults in Machine Tools with an Open Architecture CNC

  • Kim Dong Hoon;Kim Sun Ho;Song Jun-Yeob
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1597-1610
    • /
    • 2005
  • The conventional computerized numerical controller (CNC) of machine tools has been increasingly replaced by a PC-based open architecture CNC (OAC) that is independent of a CNC vendor. The OAC and machine tools with an OAC have led to a convenient environment in which user-defined applications can be efficiently implemented within a CNC. This paper proposes a method of diagnosing the cause of operational faults. The method is based on the status of a programmable logic controller in machine tools with an OAC. An operational fault is defined as a disability that occurs during the normal operation of machine tools. Operational faults constitute more than 70 percent of all faults and are also unpredictable because most of them occur without any warning. To quickly and correctly diagnose the cause of an operational fault, two diagnostic models are proposed: the switching function and the step switching function. The cause of the fault is logically diagnosed through a fault diagnosis system using diagnostic models. A suitable interface environment between a CNC and developed application modules is constructed to implement the diagnostic functions in the CNC domain. The results of the diagnosis were displayed on a CNC monitor for machine operators and transmitted to a remote site through a Web browser. The proposed diagnostic method and its results were useful to unskilled machine operators and reduced the machine downtime.

Study on Transient Current Limiting Operational Characteristics of Transformer Type SFCL with Two Peak Current Limiting Function (두 번의 피크전류제한 기능을 갖는 변압기형 초전도한류기의 과도전류제한 동작 특성 연구)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.499-504
    • /
    • 2016
  • In this paper, we analyzed the operational characteristics of the fault current limiting according to the amplitude of the fault current for the transformer type superconducting fault current limiter (SFCL). If the fault current happens, the superconducting element connected to the secondary coil is occurred quench and the fault current is limited. When the larger fault current occurs, the superconducting element connected to the third coil is occurred additional quench and the peak fault current is limited. We found that the fault current can be more effectively controlled through the analysis of the fault current limiting and the short-circuit tests.

Model of Remote Service and Intelligent Fault Diagnosis for CNC Machine Tool (공작기계의 지능형 고장진단과 원격 서비스 모델)

  • Kim, Sun-Ho;Kim, Dong-Hoon;Han, Gi-Sang;Kim, Chan-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.168-178
    • /
    • 2002
  • The CNC machine toots has two kinds of fault. One is the fault due to degraded parts and the other is the fault due to operation disability. The phenomena of degradation is predictable but the operational fault is unpredictable because it occurred without any warning. The major faults of CNC machine tool are operational faults which are charged over 70%. This paper describes the model of remote service and the intelligent fault diagnosis system to diagnosis operational faults of CNC machine tools. To generalize fault diagnosis, two diagnosis models such as SF(Switching Function) and SSF(Step Switching Function) are proposed. The SF is static model and SSF is dynamic model for expression of fault. The SF and SSF model can be generated using SFG(Switching Function Generator) which is developed in this research. The three major operational faults such as emergency stop error, cycle start disability and machine ready disability are applied to experiment of fault modeling. To remote service of faults fur CNC machine tool, the web server and client system based internet are proposed as the suitable environment. The developed two technologies are implemented with the internal function of open architecture controller. The implemental results for two technologies are presented to validate the proposed scheme.

Analysis and Simplification of Fault Model for CMOS Operational Amplifier (CMOS 연산 증폭기의 고장 모델 분석 및 고장 집합의 간략화)

  • 김윤도;송근호;이효상;김강철;한석붕
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.349-352
    • /
    • 1999
  • In this paper, we present simplified fault set which is made by analyzing fault relation to design specification in CMOS operational amplifier. The hard fault is easily modeled because an effect of hard fault is out of all design specification. However, the soft fault is not easily modeled because an effect of soft fault on design specification is varied according to position and depth of fault. We simulated hard and soft fault by HSPICE, varying threshold voltage and W/L ratio from 90% increase to 90% decrease. The decrease of test time and the production of high reliability mixed-mode IC are possible by the proposed fault set.

  • PDF

A Data Fault Detection System for Diesel Engines Using Neural Networks (신경회로망을 이용한 디젤기관의 데이터 이상감지 시스템에 관한 연구)

  • 천행춘;유영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.493-500
    • /
    • 2002
  • The operational data of diesel generator engine is two kinds of data. One is interactive the other is non interactive. We can find the fault information from interactive data measured for every sampling time when the changing rate, direction and status of data are investigated in comparition with those of normal status to diagnose the fault of combustion system. The various data values of combustion system for diesel engine are not proportional to load condition. The criterion to decide the level of data value is not absolute but relative to relational data. This study proposes to compose malfunction diagnosis engine using neural networks to decide that level of data value is out of normal status with the data collected from generator engine of the ship using the commercial data mining tool. This paper investigates the real ship's operational data of diesel generator engine and confirms usefulness of fault detecting through simulations for fault detecting.

Simulation of Operational Characteristics in Integrated Three-Phase Flux-Lock Type SFCL (3상 일체화된 자속구속형 고온초전도 전류제한기의 동작특성 시뮬레이션)

  • Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.167-168
    • /
    • 2005
  • The operational characteristics of the integrated three-phase flux-lock type superconducting fault current limiter (SFCL) were analyzed. The suggested three-phase SFCL consisted of a three-phase flux-lock reactor and three high-Tc superconducting (HTSC) elements. The former has three windings wound on an iron core, each of which has the same turn's ratio between coil 1 and coil 2. The latter are connected in series with coil 2 of each phase. The integrated three-phase flux-lock type SFCL showed the operational characteristics that the fault phase could affect the sound phase, which resulted in quenching the HTSC element in the sound phase. Through the computer simulation applying numerical analysis for its three-phase equivalent circuit, the fault current limiting characteristics of the integrated three-phase flux-lock type SFCL according to the ground fault types were compared.

  • PDF

Operational Characteristics in Integrated Three-Phase Flux-Lock Type SFCL (3상 일체화된 자속구속형 고온초전도 전류제한기의 동작특성)

  • Lim, Sung-Hun;Han, Tae-Hee;Park, Hyoung-Min;Cho, Yong-Sun;Song, Jae-Joo;Choi, Myoung-Ho;Hwang, Jong-Sun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.112-113
    • /
    • 2006
  • The operational characteristics of the integrated three-phase flux-lock type superconducting fault current limiter (SFCL) were analyzed. The suggested three-phase SFCL consisted of a three-phase flux-lock reactor and three high-$T_c$ superconducting (HTSC) elements. The former has three windings wound on an iron core, each of which has the same turn's ratio between coil 1 and coil 2. The latter are connected in series with coil 2 of each phase. The integrated three-phase flux-lock type SFCL showed the operational characteristics that the fault phase could affect the sound phase, which resulted in quenching the HTSC element in the sound phase. Through the computer simulation applying numerical analysis for its three-phase equivalent circuit, the fault current limiting characteristics of the integrated three-phase flux-lock type SFCL according to the ground fault types were compared.

  • PDF

Analysis of Operational Modes in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting (일체화된 삼상 자속구속형 고온초전도 전류제한기의 동작모드 분석)

  • Park, Chung-Ryul;Du, Ho-Ik;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.186-187
    • /
    • 2006
  • The development of SFCL (Superconducting Fault Current Limiter) is getting more important as the power demand is increased rapidly. Up to now, several kinds of SFCL have been proposed and it is expected that they will be applied to appropriate position considering their own properties. Amongst those proposed SFCL, flux-lock type SFCL using the magnetic cancelation for current limiting has the advantages of overcoming the technical difficulties that other types of SFCLs have. In this paper, the integrated three-phase flux-lock type SFCL was fabricated and its operational modes were investigated through the short circuit tests. The operational mode were to divided into four mode according to the variation of the currents flowing into the secondary winding connected the superconducting elements and the speed of the quench generation. It was expected that the improvement of current limiting characteristics of the SFCL could be possible through control of the operational mode.

  • PDF

The Analysis of Operational Characteristics of Inductive High-Tc Superconducting Fault Current Limiter Concerning Harmonic Component (고조파 성분을 고려한 유도형 고온초전도한류기의 동작 특성 해석)

  • Yim, Do-Hyon;Joo, Min-Seok;Chu, Yong;Kim, Han-Jun;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.131-133
    • /
    • 1995
  • Inductive high-Tc superconducting fault current limiter using YBCO superconducting ring in the secondary part has many advantages in power networks. It is based on the superconducting to normal transition and this paper describes its operational characteristics and experimental results, especially focused on the harmonic component analysis and recovery time. We fabricated and tested it under various conditions for the analysis of transient fault characteristics. And for the analysis of harmonics we used FFT methods. The superconducting ring was quenched in 240Arms and fault current was effectively limited to the lower current level. In addition, it was fast recovered when the fault condition was removed and after fault the system had odd harmonics.

  • PDF