• Title/Summary/Keyword: Operation layer

Search Result 1,096, Processing Time 0.04 seconds

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 김종수;강성주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1743-1750
    • /
    • 2003
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as a speed detector, but they increase cost and size of the motor and restrict the industrial drive applications. So in these days, many papers have reported in the sensorless operation of DC motor〔3­5〕. This paper presents a new sensorless strategy using neural networks〔6­8〕. Neural network has three layers which are input layer, hidden layer and output layer. The optimal neural network structure was tracked down by trial and error, and it was found that 4­16­1 neural network structure has given suitable results for the instantaneous rotor speed. Also, learning method is very important in neural network. Supervised learning methods〔8〕 are typically used to train the neural network for learning the input/output pattern presented. The back­propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

OXC structure for MPλS merging implementation based on WDM network (WDM망 기반의 MPλS merging 구현을 위한 OXC 구조)

  • Kim, Kyeong-Mok;Cho, Yang-Hyuon;Oh, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3B
    • /
    • pp.183-190
    • /
    • 2003
  • The explosion of the Internet has brought an acute need for efficient operation, which becomes to develop several technologies based on optical networks. By matching merging technology using wavelength multiplexing, an efficient administration with limited wavelength can provide scalability of network. The merging in optical layer has limitation of devices since the merging can not be performed in this layer. Hence the merging must be implemented in electronic layer. When the merging is implemented, the delay time would be increased in OXC (Optical Cross Connection), but the improvement of throughput rate will be expected in the process of explosive traffic due to reduction of optical channel supporting large bandwidth. In this thesis, we proposed an OXC of dual module having a merging function. We considered the optimum merging point with the largest in system performance and confirmed results using the simulation.

High Performance GaN-Based Light-Emitting Diodes by Increased Hole Concentration Via Graphene Oxide Sheets

  • Jeong, Hyun;Jeong, Seung Yol;Jeong, Hyun Joon;Park, Doo Jae;Kim, Yong Hwan;Kim, HyoJung;Lee, Geon-Woong;Jeong, Mun Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.244.1-244.1
    • /
    • 2013
  • The p-type GaN which act as a hole injection layer in GaN-based LEDs has fundamental problems. The first one arises from the difficulty in growing a highly doped p-GaN (with a carrier concentration exceeding ~1018 $cm^{-3}$). And the second one is the absence of appropriate metals or conducting oxides having a work function that is larger than that of p-type GaN (7.5 eV). Moreover, the LED efficiency is decreases gradually as the injection current increases (the so-called 'efficiency droop' phenomenon). The efficiency droop phenomenon in InGaN quantum wells (QWs) has been a large obstacle that has hindered high-efficiency operation at high current density. In this study, we introduce the new approaches to improve the light-output power of LEDs by using graphene oxide sheets. Graphene oxide has many functional groups such as the oxygen epoxide, the hydroxyl, and the carboxyl groups. Due to nature of such functional groups, graphene oxide possess a lot of hole carriers. If graphene oxide combine with LED top surface, graphene oxide may supply hole carriers to p-type GaN layer which has relatively low free carrier concentration less than electron concentration in n-type GaN layer. To prove the enhancement factor of graphene oxide coated LEDs, we have investigated electrical and optical properties by using ultra-violet photo-excited spectroscopy, confocal scanning electroluminescence microscopy.

  • PDF

IR Camera Technique Application for Evaluation of Gas Turbine Blades Covering Integrity (가스터빈의 코팅층 건정성 평가를 위한 적외선 열화상 카메라 기법 활용)

  • Kim J.Y.;Yang D.J.;Choi C.J.;Park S.G.;Ahn Y.S.;Jeong G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.192-196
    • /
    • 2005
  • Key part of main equipment in a gas turbine may be likely to be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The number of parts for maintenance also increases, but diagnostics technology fur the maintenance actually does not catch up with the demand. Blades are made of precipitation hardening Ni superalloy IN738 and the like for keeping hot strength. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc. in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take long time and also require much cost. In this study, defect diagnostics were tested for the coating layer of an industrial gas turbine blade, using an infraredthermography camera. Since the infrared thermography method can check a temperature distribution on a wide range of area by means of non-contact, it can advantageously save expenses and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this essay includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing for analyzing defects on the coating layer of the gas turbine blade.

  • PDF

HAMM(Hybrid Address Mapping Method) for Increasing Logical Address Mapping Performance on Flash Translation Layer of SSD (SSD 플래시 변환 계층 상에서 논리 주소 매핑의 성능 향상을 위한 HAMM(Hybrid Address Mapping Method))

  • Lee, Ji-Won;Roh, Hong-Chan;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.17D no.6
    • /
    • pp.383-394
    • /
    • 2010
  • Flash memory based SSDs are currently being considered as a promising candidate for replacing hard disks due to several superior features such as shorter access time, lower power consumption and better shock resistance. However, SSDs have different characteristics from hard disk such as difference of unit and time for read, write and erase operation and impossibility for over-writing. Because of these reasons, SSDs have disadvantages on hard disk based systems, so FTL(Flash Translation Layer) is designed to increase SSDs' efficiency. In this paper, we propose an advanced logical address mapping method for increasing SSDs' performance, which is named HAMM(Hybrid Address Mapping Method). HAMM addresses drawbacks of previous block-mapping method and super-block-mapping method and takes advantages of them. We experimented our method on our own SSDs simulator. In the experiments, we confirmed that HAMM uses storage area more efficiently than super-block-mapping method, given the same buffer size. In addition, HAMM used smaller memory than block-mapping method to construct mapping table, demonstrating almost same performance.

Support-generation Method Using the Morphological Image Processing for DLP 3D Printer (DLP 3D 프린터를 위한 형태학적 영상처리를 이용한 서포터 생성 방법)

  • Lee, Seung-Mok;Kim, Young-Hyung;Eem, Jae-Kwon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.15 no.12
    • /
    • pp.165-171
    • /
    • 2017
  • This paper proposes a method of support-generation using morphological image processing instead of geometric calculations. The geometric computational cost is dependent on the shape, but our method is independent on the shape. For obtaining the external support area for extrusion shape, we represents morphological operations between two sliced layer images and shows results of each operation stages. Internal support area is evaluated from erosion and opening operations with the sliced-layer image. In these support areas, the supporter image is generated using the designed support structures. Also, we made a DLP printer and the STL model included supporter-structure is printed by the DLP printer. We confirmed the necessity of support-generation method with the support structures individually dependent on materials by looking at the printed results.

Tactical Service Mesh for Intelligent Traffic QoS Coordination over Future Tactical Network (미래 전술망의 지능적 트래픽 QoS 조율을 위한 전술 서비스 메쉬)

  • Kang, Moonjoong;Shin, Jun-Sik;Park, Juman;Park, Chan Yi;Kim, JongWon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.369-381
    • /
    • 2019
  • As tactical networks are gradually shifting toward IP-based flexible operation for diversified battlefield services, QoS(Quality-of-Service) coordination for service differentiation becomes essential to overcome the heterogeneous and scarce networking resources limitations. QoS coordination for tactical network traffic should be able to monitor and react the dynamic changes in underlying network topology and service priorities. In this paper, by adopting the emerging cloud-native service mesh concept into tactical network context, we study the feasibility of intelligent QoS coordination by employing tactical service mesh(TSM) as an additional layer to support enhanced traffic quality monitoring and control. The additional TSM layer can leverage distributed service-mesh proxies at tactical mesh WAN(Wide Area Network) nodes so that service-aware differentiated QoS coordination can be effectively designed and integrated with TSM-assisted traffic monitoring and control. Also, by validating the feasibility of TSM layer for QoS coordination with miniaturized experimental setup, we show the potential of the proposed approach with several approximated battlefield traffics over a simulated TSM-enabled tactical network.

Implementation of Speech Recognition and Flight Controller Based on Deep Learning for Control to Primary Control Surface of Aircraft

  • Hur, Hwa-La;Kim, Tae-Sun;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.57-64
    • /
    • 2021
  • In this paper, we propose a device that can control the primary control surface of an aircraft by recognizing speech commands. The speech command consists of 19 commands, and a learning model is constructed based on a total of 2,500 datasets. The training model is composed of a CNN model using the Sequential library of the TensorFlow-based Keras model, and the speech file used for training uses the MFCC algorithm to extract features. The learning model consists of two convolution layers for feature recognition and Fully Connected Layer for classification consists of two dense layers. The accuracy of the validation dataset was 98.4%, and the performance evaluation of the test dataset showed an accuracy of 97.6%. In addition, it was confirmed that the operation was performed normally by designing and implementing a Raspberry Pi-based control device. In the future, it can be used as a virtual training environment in the field of voice recognition automatic flight and aviation maintenance.

Design of HUST-PTF beamline control system for fast energy changing

  • Li, Peilun;Li, Dong;Qin, Bin;Zhou, Chong;Han, Wenjie;Liao, Yicheng;Chen, Aote
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2852-2858
    • /
    • 2022
  • A proton therapy facility is under development at Huazhong University of Science and Technology (HUST). To meet the need for fast energy changes during treatments, a beamline control system (BCS) has been designed and implemented. The BCS coordinates and controls various beamline devices by adopting a distributed architecture divided into three layers: the client, server, and device layers. Among these, the design of the server layer is the key to realize fast energy changes. The server layer adopts the submodule programming paradigm and optimizes the data interface among modules, allowing the main workflow to be separated from the device workflow and data. Furthermore, this layer uses asynchronous, multithreaded, and thread-locking methods to improve the system's ability to operation efficiently and securely. Notably, to evaluate the changing energy status over time, a dynamic node update method is adopted, which can dynamically adjust the update frequency of variable nodes. This method not only meets the demand for fast updates on energy changes but also reduces the server's communication load in the steady state. This method is tested on a virtual platform, and the results are as expected.

Study on Message Exposure to Administrator in Secure Messaging Protocol MLS (보안 메시징 프로토콜 MLS에서 관리자에 메시지노출에 관한 연구)

  • Kwon, Songhui;Choi, Hyoung-Kee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.255-266
    • /
    • 2022
  • Messenger applications applied end-to-end encryption on their own to prevent message exposure to servers. Standardization of a group messaging protocol called Message Layer Security (MLS) with end-to-end encryption is being discussed for secure and efficient message communication. This paper performs safety checks based on the operation process and security requirements of MLS. Confidentiality to a middleman server, which is an essential security requirement in messenger communication, can be easily violated by a server administrator. We define a server administrator who is curious about the group's communication content as a curious admin and present an attack in which the admin obtains a group key from MLS. Reminds messenger application users that the server can view your communication content at any time. We discuss ways to authenticate between users without going through the server to prevent curious admin attacks.