• Title/Summary/Keyword: Operation Sequence

Search Result 572, Processing Time 0.021 seconds

Integral effect tests for intermediate and small break loss-of-coolant accidents with passive emergency core cooling system

  • Byoung-Uhn Bae;Seok Cho;Jae Bong Lee;Yu-Sun Park;Jongrok Kim;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2438-2446
    • /
    • 2023
  • To cool down a nuclear reactor core and prevent the fuel damage without a pump-driven active component during any anticipated accident, the passive emergency core cooling system (PECCS) was designed and adopted in an advanced light water reactor, i-POWER. In this study, for a validation of the cooling capability of PECCS, thermal-hydraulic integral effect tests were performed with the ATLAS facility by simulating intermediate and small break loss-of-coolant accidents (IBLOCA and SBLOCA). The test result showed that PECCS could effectively depressurize the reactor coolant system by supplying the safety injection water from the safety injection tanks (SITs). The result pointed out that the safety injection from IRWST should have been activated earlier to inhibit the excessive core heat-up. The sequence of the PECCS injection and the major thermal hydraulic transient during the SBLOCA transient was similar to the result of the IBLOCA test with the equivalent PECCS condition. The test data can be used to evaluate the capability of thermal hydraulic safety analysis codes in predicting IBLOCA and SBLOCA transients under an operation of passive safety system.

MAGRU: Multi-layer Attention with GRU for Logistics Warehousing Demand Prediction

  • Ran Tian;Bo Wang;Chu Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.528-550
    • /
    • 2024
  • Warehousing demand prediction is an essential part of the supply chain, providing a fundamental basis for product manufacturing, replenishment, warehouse planning, etc. Existing forecasting methods cannot produce accurate forecasts since warehouse demand is affected by external factors such as holidays and seasons. Some aspects, such as consumer psychology and producer reputation, are challenging to quantify. The data can fluctuate widely or do not show obvious trend cycles. We introduce a new model for warehouse demand prediction called MAGRU, which stands for Multi-layer Attention with GRU. In the model, firstly, we perform the embedding operation on the input sequence to quantify the external influences; after that, we implement an encoder using GRU and the attention mechanism. The hidden state of GRU captures essential time series. In the decoder, we use attention again to select the key hidden states among all-time slices as the data to be fed into the GRU network. Experimental results show that this model has higher accuracy than RNN, LSTM, GRU, Prophet, XGboost, and DARNN. Using mean absolute error (MAE) and symmetric mean absolute percentage error(SMAPE) to evaluate the experimental results, MAGRU's MAE, RMSE, and SMAPE decreased by 7.65%, 10.03%, and 8.87% over GRU-LSTM, the current best model for solving this type of problem.

Zero-suppressed ternary decision diagram algorithm for solving noncoherent fault trees in probabilistic safety assessment of nuclear power plants

  • Woo Sik Jung
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2092-2098
    • /
    • 2024
  • Probabilistic safety assessment (PSA) plays a critical role in ensuring the safe operation of nuclear power plants. In PSA, event trees are developed to identify accident sequences that could lead to core damage. These event trees are then transformed into a core-damage fault tree, wherein the accident sequences are represented by usual and complemented logic gates representing failed and successful operations of safety systems, respectively. The core damage frequency (CDF) is estimated by calculating the minimal cut sets (MCSs) of the core-damage fault tree. Delete-term approximation (DTA) is commonly employed to approximately solve MCSs representing accident sequence logics from noncoherent core-damage fault trees. However, DTA can lead to an overestimation of CDF, particularly when fault trees contain many nonrare events. To address this issue, the present study introduces a new zero-suppressed ternary decision diagram (ZTDD) algorithm that averts the CDF overestimation caused by DTA. This ZTDD algorithm can optionally calculate MCSs with DTA or prime implicants (PIs) without any approximation from the core-damage fault tree. By calculating PIs, accurate CDF can be calculated. The present study provides a comprehensive explanation of the ZTDD structure, formula of the ZTDD algorithm, ZTDD minimization, probability calculation from ZTDD, strength of the ZTDD algorithm, and ZTDD application results. Results reveal that the ZTDD algorithm is a powerful tool that can quickly and accurately calculate CDF and drastically improve the safety of nuclear power plants.

Application of PERT/CPM in dental practice (PERT/CPM의 치과임상에의 적용)

  • Kim, Bo-Kuk;Kim, Jae-Hyun;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.3
    • /
    • pp.186-194
    • /
    • 2014
  • Purpose: Process management is the activity which manages all procedure of construction by representing visually interrelation of operation or sequence setting. The purpose of this study was for reducing treatment period and higher efficiency of treatment through application of PERT/CPM (Program Evaluation & Review Technique/Critical Path Method) in dental clinic. Materials and methods: The patients were selected for study who needed more than 2 departments' cooperation for prosthodontic treatment in Wonkwang Dental University Hospital. Control group is composed of the patient's whole treatment plan, treatment period, numbers of hospital visit, treatment costs, treatment results. On the other hand, experiment group contains the patient's virtual treatment data based on PERT/CPM technique. We applied PERT/CPM in operation analysis. Results: Treatment period, numbers of hospital visit was decreased as 18.1% and 15.3% when we applied operation analysis based on charts. Also treatment cost in experiment group was 0.9% economized compared with control group's treatment cost. Conclusion: Application of PERT/CPM in dental clinic can achieve reliable treatment and reduced treatment period and establish plan of minimum treatment cost.

Auto-Segmentation Algorithm For Liver-Vessel From Abdominal MDCT Image (복부 MDCT 영상으로부터 간혈관 자동 추출 알고리즘)

  • Park, Seong-Me;Lee, You-Jin;Park, Jong-Won
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.430-437
    • /
    • 2010
  • It is essential for living donor liver transplantation that surgeon must understand the hepatic vessel structure to improve the success rate of operation. In this paper, we extract the liver boundary without other surrounding structures such as heart, stomach, and spleen using the contrast enhanced MDCT liver image sequence. After that, we extract the major hepatic veins (left, middle, right hepatic vein) with morphological filter after review the basic structure of hepatic vessel which reside in segmented liver image region. The purpose of this study is provide the overall status of transplantation operation with size estimation of resection part which is dissected along with the middle hepatic vein. The method of liver extraction is as follows: firstly, we get rid of background and muscle layer with gray level distribution ratio from sampling process. secondly, the coincident images match with unit mesh image are unified with resulted image using the corse coordinate of liver and body. thirdly, we extract the final liver image after expanding and region filling. Using the segmented liver images, we extract the hepatic vessels with morphological filter and reversed the major hepatic vessels only with a results of ascending order of vessel size. The 3D reconstructed views of hepatic vessel are generated after applying the interpolation to provide the smooth view. These 3D view are used to estimate the dissection line after identify the middle hepatic vein. Finally, the volume of resection region is calculated and we can identify the possibility of successful transplantation operation.

The Development of a Multi-Purpose Irradiator and the Characteristic of Dose Distribution (다목적 방사선 조사장치 개발 및 선량분포특성)

  • Lee, Dong-Hoon;Ji, Young-Hoon;Lee, Dong-Han;Kim, Yoon-Jong;Hong, Seung-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.42-48
    • /
    • 2002
  • The design, construction and performance test of a convenient multi-purpose irradiator is described. A multi-purpose irradiator using Cesium-137 has been developed for studies of low dose radiation effects in biology and for calibration of Thermo Luminescent dosimeter(TLD). During the operation, three rods of radioactive material which are 10cm in length revolve 180 degrees and irradiate biological samples, or TLD, and return to their shielded position, after the programmed time. A programmable Logic Controller(PLC) controls the sequence of operation, interlock, motor rotation and safety system. The rotation speed of biological samples can vary up to 20 RPM. A real time monitoring system was also incorporated to check and control the operation status of the irradiator. The capacity of the irradiation chamber was 4.5 liters. The isodose distribution at arbitrary vertical planes was measured by using film dosimetry. The dose-rate was 0.13 cGy/min in air and 0.11 cGy/min in water equivalent material in the case of Cesium-137. Range of activity was 2 Ci. The homogeneity of dose distribution in the chamber was ${\pm}$7%. The actual radiation level on the surface was within permissible levels. The irradiator had a maximum 0.35 mR/min radiation leakage on its surface.

A Study on the Development of Harmonic Limit Device for Stabilizing Main Circuit Equipment of Train (열차운행 안정화를 위한 주회로 기기의 고조파 제한장치 개발에 관한 연구)

  • Kim, Sung Joon;Chae, Eun Kyung;Kang, Jeong Won
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.853-861
    • /
    • 2018
  • This paper proposes the application of harmonic constraints to address the problems caused by abnormal voltage increases when electric railway vehicles are running. The AC line that supplies the train with power during operation is used to provide electricity of 25kV/60 Hz, but gradually the size and frequency of harmonics involved in the line are varied with the technological evolution of the railroad vehicle electrical equipment. An increase in heat losses due to the failure of the instrument transformer (PT), the main circuit device, which is a serious problem with the recent train safety operation, or to the main displacement voltage. When high frequency components are introduced through low frequency Transformers of the main circuit device, the high intensity of the components is caused by the high intensity of the core and the current flow of the parasitic core is increased, thus generating heat. To solve this problem, the recent adjustment of the sequence has applied artificial NOTCH OFF of the power converter. However, the method of receiving and controlling the OFF signal operates by interaction between the ground and the vehicle's devices, thus it is invalid in the event of failure, and an actual accident is occurring. Therefore, the harmonic currents were required to prevent possible flow of harmonics, and conducted a study to prevent accidental occurrence of train accidents and to verify feasibility of the device through the simulations of the train's experimental analysis and the simulations of the train for safe operation.

Imaging of Facial Nerve With 3D-DESS-WE-MRI Before Parotidectomy: Impact on Surgical Outcomes

  • Han-Sin Jeong;Yikyung Kim;Hyung-Jin Kim;Hak Jung, Kim;Eun-hye Kim;Sook-young Woo;Man Ki Chung;Young-Ik Son
    • Korean Journal of Radiology
    • /
    • v.24 no.9
    • /
    • pp.860-870
    • /
    • 2023
  • Objective: The intra-parotid facial nerve (FN) can be visualized using three-dimensional double-echo steady-state water-excitation sequence magnetic resonance imaging (3D-DESS-WE-MRI). However, the clinical impact of FN imaging using 3D-DESS-WE-MRI before parotidectomy has not yet been explored. We compared the clinical outcomes of parotidectomy in patients with and without preoperative 3D-DESS-WE-MRI. Materials and Methods: This prospective, non-randomized, single-institution study included 296 adult patients who underwent parotidectomy for parotid tumors, excluding superficial and mobile tumors. Preoperative evaluation with 3D-DESS-WE-MRI was performed in 122 patients, and not performed in 174 patients. FN visibility and tumor location relative to FN on 3D-DESS-WE-MRI were evaluated in 120 patients. Rates of FN palsy (FNP) and operation times were compared between patients with and without 3D-DESS-WE-MRI; propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) were used to adjust for surgical and tumor factors. Results: The main trunk, temporofacial branch, and cervicofacial branch of the intra-parotid FN were identified using 3D-DESS-WE-MRI in approximately 97.5% (117/120), 44.2% (53/120), and 25.0% (30/120) of cases, respectively. The tumor location relative to FN, as assessed on magnetic resonance imaging, concurred with surgical findings in 90.8% (109/120) of cases. Rates of temporary and permanent FNP did not vary between patients with and without 3D-DESS-WE-MRI according to PSM (odds ratio, 2.29 [95% confidence interval {CI} 0.64-8.25] and 2.02 [95% CI: 0.32-12.90], respectively) and IPTW (odds ratio, 1.76 [95% CI: 0.19-16.75] and 1.94 [95% CI: 0.20-18.49], respectively). Conversely, operation time for surgical identification of FN was significantly shorter with 3D-DESS-WE-MRI (median, 25 vs. 35 min for PSM and 25 vs. 30 min for IPTW, P < 0.001). Conclusion: Preoperative FN imaging with 3D-DESS-WE-MRI facilitated anatomical identification of FN and its relationship to the tumor during parotidectomy. This modality reduced operation time for FN identification, but did not significantly affect postoperative FNP rates.

Performance of SE-MMA Blind Adaptive Equalization Algorithm in QAM System (QAM 시스템에서 SE-MMA 블라인드 적응 등화 알고리즘의 성능)

  • Lim, Seung-Gag;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.63-69
    • /
    • 2013
  • This paper related with the performance of SE-MMA (Signed-Error MMA) that is the reduction of computational operation number in algorithm than MMA blind eualization algorithm which are possible to elimination of intersymbol interferance in the band limited and time dispersive nonlinear communication channel. In MMA algorithm which are possible to reduction of amplitude and phase rotation by intersymbol interference that is occurred in channel without using the training sequence, it uses the error signal that is the difference of the equalizer output and constant modulus, the statisticlly characteristic of transmitted signal. But in SE-MMA, it uses the polarity of the error signal, then it is possible to reduce the updating the tap coefficient and to simplify the H/W implementation. The computer simulation were performed in order to compare the performance of SE-MMA and conventional MMA algorithm. For this, the recovered signal constellation that is the output of the equalizer, the convergence performance by MSE, MD (maximum distortion) and residual isi characteristic learning curve, SER were used. As a result of simulation, the SE-MMA has more fast convergence speed than the MMA. But in the other index after reaching the seady state, it gives more worst performance values in the used index.

Camera Motion Estimation using Geometrically Symmetric Points in Subsequent Video Frames (인접 영상 프레임에서 기하학적 대칭점을 이용한 카메라 움직임 추정)

  • Jeon, Dae-Seong;Mun, Seong-Heon;Park, Jun-Ho;Yun, Yeong-U
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.2
    • /
    • pp.35-44
    • /
    • 2002
  • The translation and the rotation of camera occur global motion which affects all over the frame in video sequence. With the video sequences containing global motion, it is practically impossible to extract exact video objects and to calculate genuine object motions. Therefore, high compression ratio cannot be achieved due to the large motion vectors. This problem can be solved when the global motion compensated frames are used. The existing camera motion estimation methods for global motion compensation have a large amount of computations in common. In this paper, we propose a simple global motion estimation algorithm that consists of linear equations without any repetition. The algorithm uses information .of symmetric points in the frame of the video sequence. The discriminant conditions to distinguish regions belonging to distant view from foreground in the frame are presented. Only for the distant view satisfying the discriminant conditions, the linear equations for the panning, tilting, and zooming parameters are applied. From the experimental results using the MPEG test sequences, we can confirm that the proposed algorithm estimates correct global motion parameters. Moreover the real-time capability of the proposed technique can be applicable to many MPEG-4 and MPEG-7 related areas.