• Title/Summary/Keyword: Operation Parameter

검색결과 998건 처리시간 0.024초

전자결재 시스템에서 보안기법 설계 및 구현 (Design and Implementation of Security Technique in Electronic Signature System)

  • 유영모;강성수;김완규;송진국
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.491-498
    • /
    • 2001
  • 본 논문에서는 개방형 통신상에서 전송중인 데이터를 암호화시켜 정보의 노출을 방지하고 송신자가 인정한 수신자만이 이러한 정보를 받을 수 있도록 한 암호화 알고리즘을 제시한다. 암호화의 방법에는 크게 관용키 암호화 방법과 공개키 암호화 방법으로 나누는데 본 논문에서는 혼합형 암호화 방식의 개념을 이용했다. 이 알고리즘은 통신시간과 저장공간을 절약하기 위해 전송할 데이터를 압축한 다음 암호화시키게 되며, 암호화 key를 생성하기 위한 파라미터로서 키를 생성하게 하는 것이 특징이다. 파라미터는 키 값이 생성됨과 동시에 전송되고 매 26회마다 파라미터를 변경시켜 키를 재생성 시킨다. 암호화키의 구성요소인 random number 는 table 형태로 저장되는데 키가 40회마다 table을 재편성 key의 보안을 강화하였다. 이렇게 생성된 키와 원래 데이터는 연산과정을 거쳐 암호화가 이루어진다. 복호화는 전송된 파라미터를 조사해 복호화 키를 구한 다음 암호화 동작의 역순으로 수행한다. 본 논문에서 제시한 알고리즘을 구현 및 평가결과는 100KB 메시지 0.0152/sec 정도로 빠른 수행이 되었다.

  • PDF

바이코히어런스 분석 기법을 이용한 마취 단계별 뇌파의 특성 분석 (EEG Signal Characteristic Analysis for Monitoring of Anesthesia Depth Using Bicoherence Analysis Method)

  • 박준모;박종덕;전계록;허영
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권1호
    • /
    • pp.35-41
    • /
    • 2006
  • Although reachers have studied for a long time, they don't make criteria for anesthesia depth. anesthetists can't make a prediction about patient's reaction. Therefor, patients have potential risk such as poisonous side effect late-awake, early-awake and strain reaction. EEG are received from twenty-five patients who agreed to investigate themselves during operation with Enflurane-anesthesis in progress of anesthesia. EEG are divided pre-anesthesia, before incision of skin, operation 1, operation 2, awaking, post-anesthesia by anesthesia progress step. EEG is applied pre-processing, base line correct, linear detrend to get more reliable data. EEG data are handled by electronic processing and the EEG data are calculated by bicoherence. During pre-anesthesia and post anesthesia, appearance rate of bicoherence value is observed strong appearance rate in high frequency range($15\~30Hz$). During the anesthesia of patient, a strong appearance rate is revealed the low frequency area(0~10Hz). After bicoherence is calculated by percentage of a appearance rate, that is, Bicpara$\#$1, Bicpara$\#$2, Bicpara$\#$3 and Bicpara$\#$4 parameter are extracted. In result of bicoherence analysis, Bicpara$\#$2 and Bicpara#4 are considered that the best parameter showed progress of anesthesia effectively. And each separated bicoherence are calculated by average bicoherence's numerical value, divide by 2 area, appear by each BicHz$\#$1, BicHz$\#$2, and observed BicHz$\#$1/BicHz$\#$2's change. In result of bicoherence analysis, BicHz$\#$1, BicHz$\#$2 and BicHz$\#$1/BicHz$\#$2 are considered that the best parameter showed progress of anesthesia effectively. In conclusion, I confirmed the anesthesia progress phase, concluded to usefulness of parameter on bispectrum and bicoherence analysis and evaluated the depth of anesthesia. In the future, it is going to use for doctor's diagnosis and apply to protect an medical accident owing to anesthesia.

가동원전에서 공정모델링을 통한 PID 튜닝 시뮬레이션 방법 (A Simulation Method of PID Tuning with Process Modeling in Operating Nuclear Power Plants)

  • 민문기;정창규;이광현;이재기;김희제
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.290-294
    • /
    • 2014
  • PID(Proportional, Integral, Derivative) controller is the most popular process controllers in nuclear power plants. The optimized parameter setting of the process controller contributes to the stable operation and the efficiency of the operating nuclear power plants. PID parameter setting is tuned when new process control systems are installed or current process control systems are changed. When the nuclear plant is shut down, a lot of PID tuning methods such as the Trial and Error method, Ultimate Oscillation method operation, Ziegler-Nichols method, frequency method are used to tune the PID values. But inadequate PID parameter setting can be the cause of the unstable process of the operating nuclear power plant. Therefore the results of PID parameter setting should be simulated, optimized and finally verified. This paper introduces the simulation method of PID tuning to optimize the PID parameter setting and confirms them of the actual PID controller in the operating nuclear power plants. The simulation method provides the accurate process modeling and optimized PID parameter setting of the multi-loop control process in particular.

동근형상가공의 형상모델링과 예측에 관한 연구 (A Study on the Modeling and Prediction of Machined Profile in Round Shape Machining)

  • 윤문철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.659-664
    • /
    • 2000
  • In this paper, We have discussed on the modeling of machined outer geometry which was established for the case of round shape machining, also the effects of externally machined profile are analyzed and its modeling realiability was verified by the experiments of roundness testing, especially in lathe operation. In this study, we established harmonic geometric model with the parameter harmonic function. In general, we can calculate the theoretical roundness profile with arbitrary multilobe parameter. But in real experiments, only 2-5 lobe profile was frequently measured. the most frequently ones are 3 and 5 lobe profile in experiments. With this results, we can predict that these results may be applies to round shape machining such as turning, drilling, boring, ball screw and cylindrical grinding operation in bearing and shaft making operation with the same method. In this study, simulation and experimental work were performed to show the profile behaviors. we can apply these new modeling method in real process for the prediction of part profile behaviors machined such as in round shape machining operation.

  • PDF

Robust feedback-linearization control for axial power distribution in pressurized water reactors during load-following operation

  • Zaidabadi nejad, M.;Ansarifar, G.R.
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.97-106
    • /
    • 2018
  • Improved load-following capability is one of the most important technical tasks of a pressurized water reactor. Controlling the nuclear reactor core during load-following operation leads to some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking: the core is subjected to sharp and large variation of local power density during transients. Axial offset (AO) is the parameter usually used to represent the core power peaking. One of the important local power peaking components in nuclear reactors is axial power peaking, which continuously changes. The main challenge of nuclear reactor control during load-following operation is to maintain the AO within acceptable limits, at a certain reference target value. This article proposes a new robust approach to AO control of pressurized water reactors during load-following operation. This method uses robust feedback-linearization control based on the multipoint kinetics reactor model (neutronic and thermal-hydraulic). In this model, the reactor core is divided into four nodes along the reactor axis. Simulation results show that this method improves the reactor load-following capability in the presence of parameter uncertainty and disturbances and can use optimum control rod groups to maneuver with variable overlapping.

무차원계수를 이용한 왕복펌프의 성능평가 방법 개발 (A development off displacement pump performance evaluation method by using dimensionless parameter)

  • 조희근;윤진하;전종길;김경원;이인복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.731-734
    • /
    • 2002
  • There have been no obvious design criteria of high efficient displacement pump using a dimensionless parameter which can represent many physical aspect of displacement pump could be very useful to estimate displacement pump performance. Many dimensionless analysis methods have been developed in fluid dynamics, machine design and so on. In this study a new dimensionless parameter is developed for estimate displacement pump performance and efficiency, until now to evaluate the performance of displacement pumps which are widely used in industry field, primarily experimental methods have been used. The dimensionless parameter contains many physical information about pump design. For example, they are the relation between flow rate and power, displacement operation displacement and size, inlet and outlet valve size. And the developed dimensionless functions are induced from numerical method.

  • PDF

온라인 여자제어시스템 모델과 SQP법을 이용한 AVR의 파라미터 튜닝 방법에 관한 연구 (A New Optimal AVR Parameter Tuning Method Using On-Line Excitation Control System Model with SQP Method)

  • 김중문;문승일
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권3호
    • /
    • pp.118-126
    • /
    • 2002
  • AVR parameter tuning for voltage control of generators has generally been done with the off-line open-circuit model of the synchronous generator. When the generator is connected on-line and operating with load the AVR operates in an entirely different environment from the open-circuit conditions. This paper describes a new method for AVR parameter tuning for on line conditions using SQP(Sequential Quadratic Programming) meshed with frequency response characteristics of linearized on-line system model. As the proposed method uses the un - line system model the tuned parameter sets show more optimal behavior in the on-line operating conditions. furthermore, as this method considers the performance indices that are needed for stable operation as constraints, AVR parameter sets that are tuned by this method could guarantee the stable performance, too.

WALSH함수의 접근에 의한 분포정수계의 파라메타 추정 (An Approach to Walsh Functions for Parameter Estimation of Distributed Parameter Systems)

  • 안두수;배종일
    • 대한전기학회논문지
    • /
    • 제39권7호
    • /
    • pp.740-748
    • /
    • 1990
  • In this paper, we consider the problem of parameter estimation, i.e., definding the internal structure of a linear distribution parameter system from its input/output data. First, a linear partial differential equation describing the system is double-integrated with respect to two variables and then transformed into an integral equation. Next the Walsh Operation Matrix for Walsh function and their integration are introduced to transform the integral equation into algebraic simultaneous equations. Finally, we develop an algorithm to estimate the parameters of the linear distributed parameter system from the simple linear algebraic simultaneous equations. It is also shown that our algorithm could be effective in real time data processing since it uses the Fast Walsh Transform.

  • PDF

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어 (Precision Position Control of PMSM Using Neural Network Disturbance observer and Parameter compensator)

  • 고종선;진달복;이태훈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권3호
    • /
    • pp.188-195
    • /
    • 2004
  • This paper presents neural load torque observer that is used to deadbeat load torque observer and gain compensation by parameter estimator As a result, the response of the PMSM(permanent magnet synchronous motor) follows that nominal plant. The load torque compensation method is composed of a neural deadbeat observer To reduce the noise effect, the post-filter implemented by MA(moving average) process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller The parameter estimator is combined with a high performance neural load torque observer to resolve the problems. The neural network is trained in on-line phases and it is composed by a feed forward recall and error back-propagation training. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against the load torque and the Parameter variation. A stability and usefulness are verified by computer simulation and experiment.

Precision Position Control of PMSM using Neural Observer and Parameter Compensator

  • Ko, Jong-Sun;Seo, Young-Ger;Kim, Hyun-Sik
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.354-362
    • /
    • 2008
  • This paper presents neural load torque compensation method which is composed of a deadbeat load torque observer and gains compensation by a parameter estimator. As a result, the response of the PMSM (permanent magnet synchronous motor) obtains better precision position control. To reduce the noise effect, the post-filter is implemented by a MA (moving average) process. The parameter compensator with an RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator is combined with a high performance neural load torque observer to resolve problems. The neural network is trained in online phases and it is composed by a feed forward recall and error back-propagation training. During normal operation, the input-output response is sampled and the weighting value is trained multi-times by the error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against load torque and parameter variation. Stability and usefulness are verified by computer simulation and experiment.