• Title/Summary/Keyword: Operating Tunnel

Search Result 223, Processing Time 0.027 seconds

Analysis of Excavation Speed and Direct Construction Cost Based on the Operating Productivities of TBM Method Site - Diameter 5.0m Target (수로터널공사의 효율성 분석을 통한 굴진속도 및 직접공사비 분석 - 구경 5.0m 중심으로)

  • Park, Hong Tae;Lee, Yang Kyu
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.328-335
    • /
    • 2012
  • The resource-based estimating based on standard unit price of construction work was estimated by multiplying the price per standard unit of work on the amount of labor, material, equipment use time. However, limitation of the resource-based estimating way does not adequately reflect the actual transactions prices. On the subject of water tunnel excavation as a new attempt to overcome these limitations, this study analyzed productivity by work type into cutter inspection/ exchange, TBM maintenance, TBM inspection/refueling, subsequent installations, tramcar, operating change, a cave-underground reinforcement / rock reinforcement, safety / meetings and analyzed actual cost estimating and the net advance rate based on this analysis result. Actual cost estimating calculation approach presented in this study can be utilized as a useful tool to predict the actual cost estimating in the TBM water tunnels field.

Development of Applications for Recording Ore Production Data and Writing Daily Work Report of Dump Truck in Mining Sites (광산 현장의 원석 생산 데이터 기록 및 덤프트럭 작업일지 작성을 위한 애플리케이션 개발)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.93-106
    • /
    • 2022
  • This study developed applications that allows truck drivers to record ore production data using smart devices at mine sites and to create a daily work report (operation report) in a PC environment. For this, four operating mines in Korea were selected as study areas, and daily work reports used there were investigated. The information elements included in the daily work report of each mine were analyzed. Because the information to be collected for writing ore production data and format of report are different for each mine, four types of applications were developed for the study areas. Ore production data could be recorded by receiving a signal from a Bluetooth beacon and by operating the application directly by the truck driver. The collected data files are uploaded to the cloud server, and the uploaded data files can be converted into a daily work report using the developed applications in a PC environment.

Performance Evaluation of Truck Haulage Operations in an Underground Mine using GMG's Time Usage Model and Key Performance Indicators (GMG 시간 사용 모델 및 핵심성과지표를 이용한 지하 광산 트럭 운반 작업 성능 평가)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.4
    • /
    • pp.254-271
    • /
    • 2022
  • The performance of truck haulage operations in an underground mine was evaluated using the time usage model and key performance indicators (KPIs) proposed by Global Mining Guidelines Group (GMG). An underground mine that mainly produces iron and titanium iron was selected as a study area, and truck haulage data were collected using Bluetooth beacons and tablet PCs. The collected data were analyzed to identify unit operations, activities, events, and required time of truck haulage operations, and time categories were classified based on the time usage model. The performance of the haulage operations was evaluated using nine indicators in terms of availability, utilization, and effectiveness. As a result, in terms of availability, uptime was 33.9%, physical availability was 95.7%, and mechanical availability was 94.9%. In the case of utilization, use of availability was 83.1%, asset utilization was 28.1%, and operating and effective utilization were 79.6% and 77.7%, respectively. Also, in terms of efficiency, operating efficiency was high at 97.6%, and production effectiveness was found to be 49%.

Development of Work Report for Evaluating KPIs of Truck Haulage Operation in Open Pit and Underground Mines (노천 및 지하 광산 트럭 운반 작업의 핵심성과지표 평가를 위한 작업 일지 개발)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.327-343
    • /
    • 2022
  • The standard work report for trucks was developed that records data on truck haulage operations in open-pit and underground mines, and to evaluate the performance of haulage operations. Work reports used in 5 mines in Korea was secured and analyzed, and items to be included in the standard work report were determined. By analyzing the formulas for key performance indicators (KPIs) proposed by the Global Mining Guidelines Group (GMG), it was possible to determine how to record time-related data. After selecting a limestone underground mine as a research area, the performance of haulage operations was evaluated using a standard work report. As a result, in terms of truck availability, uptime was 46.7%, and both physical and mechanical availability were 100%. In the case of utilization, use of availability was 88.2%, the asset utilization was 41.1%, and operating and effective utilization were 88.2% and 79.2%, respectively. Also, in terms of efficiency, operating efficiency was found to be 89.9%.

Efficiency Evaluation of Operating Railroad with Subway Cabin Air Purifier (도시철도 객실 공기정화장치(SCAP)의 운행차량 효율평가)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jong-Bum;Cho, Goan-Hyun;NamGoong, Seok;Lee, Joo-Yeol;Kim, Tae-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1303-1308
    • /
    • 2011
  • In the modern society various types of transportation mode are utilized, among them the subway system is the one of the main transportation mode which more than 7.21 million people ride a day. Because of interests on the indoor air quality (IAQ) of underground public facilities, concerns on IAQ of subway system by many people are increasing. There are several approach to improve IAQ of subway station, such as installing platform screen door (PSD), frequent tunnel washing-out, and etc, however there has not been any attempt to improve IAQ of subway cabin inside. Most technologies for removing airborne particulate matters are known to be difficult to adopt on the subway cabin since the problem of maintenance cost. Therefore, the ultimate object of this study is a practical development of cabin air cleaning system which can reduce the concentration of airborne particles and harmful gases at the same time. The subway cabin air purifier (SCAP) was developed for removing particulate matters and gases pollutants inside a cabin. The whole system was designed and the roll-filter device was manufactured based on numerical prediction results. It is expected that SCAP could reduce indoor air pollutants in the subway cabin practically and it can be applied to other part of transportation vehicles.

  • PDF

Noise Generation Characteristic for Tunnel Construction Equipments (건설장비에 의한 터널작업의 소음환경 실태)

  • Jang, Jae-Kil;Kim, Kab Bae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.841-849
    • /
    • 2013
  • Workers engaged in construction works have been exposed to high levels of noise during their work in tunnels. Noise is one of the major health hazards for employees working in construction sites. The aim of this study is to evaluate the noise levels generating from tunneling equipments such as jumbo drills, backhoes, payloaders, shotcrete machines and service cars. Explosion and turbo fan noises were also monitored. A high precision sound level meter was introduced for measuring LAeq, LAFmax, LAFmin and LCpeak noises in 5 tunneling work sites that were located in Seoul, Kyunggi-do and Kangwon-do areas with NATM and shield methods. The highest noise was recorded by explosion(151.9 dB LCpeak) followed by jumbo drills of higher than 110 dB(A) LAeq. Backhoe normally generated 90~110 dB(A) LAeq while breaking work of rock showed additional around 5~15 dB(A). Noise exposure levels for payloader and shotcrete machine scored more than 90 dB(A) which might be a source of noise-induced hearing loss. Additional research in revealing noise levels from construction equipments operating in tunneling works may enhance the protection of workers who exposed to noise primarily at the sites.

Operational Vibration Experiment and Analysis of a Small Vertical-Axis Wind Turbine Considering the Effect of a Tower Stiffness (타워강성 효과를 고려한 소형 수직축 풍력발전기 운전 진동실험 및 해석)

  • Choo, Heon-Ho;Sim, Jae-Park;Oh, Min-Woo;Kim, Dong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.5-9
    • /
    • 2013
  • In this study, operational vibration experiment and analysis have been conducted for the 4-blade small vertical-axis wind turbine (VAWT) including the effect of tower elastic behavior. Computational structural dynamics analysis method is applied to obtain Campbell diagram for the VAWT with elastic tower. An open type wind-tunnel is used to change and keep the wind velocity during the ground test. Equivalent elastic tower is used to support the VAWT so that the effect of elastic stiffness of the tower can be considered in the present vibration experiment. Various excitation conditions with wind loads are considered and the dominant operating vibration phenomena are physically investigated in detail.

Sheath Circulating Current Analysis of a Crossbonded Power Cable Systems

  • Jung, Chae-Kyun;Lee, Jong-Beom;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.320-328
    • /
    • 2007
  • The sheath in underground power cables serves as a layer to prevent moisture ingress into the insulation layer and provide a path for earth return current. Nowadays, owing to the maturity of manufacturing technologies, there are normally no problems for the quality of the sheath itself. However, after the cable is laid in the cable tunnel and is operating as part of the transmission network, due to network construction and some unexpected factors, some problems may be caused to the sheath. One of them is the high sheath circulating current. In a power cable system, the uniform configuration of the cables between sections is sometimes difficult to achieve because of the geometrical limitation. This will cause the increase of sheath circulating current, which results in the increase of sheath loss and the decrease of permissible current. This paper will study the various characteristics and effects of sheath circulating current, and then will prove why the sheath current rises on the underground power cable system. A newly designed device known as the Power Cable Current Analyser, as well as ATP simulation and calculation equation are used for this analysis.

Current Progress in Fabrication of Ta and Nb based STJs for an Astronomical Detector

  • Yoon, Ho-Seop;Park, Young-Sik;Park, Jang-Hyun;Yang, Min-Kyu;Lee, Jeon-Kook;Chong, Yon-Uk;Lee, Yong-Ho;Lee, Sang-Kil;Kim, Dong-Lak;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.37.3-37.3
    • /
    • 2008
  • STJ(Superconducting Tunnel Junction) technique offers next generation photon detectors exhibiting high energy resolution, high quantum efficiency and photon counting ability over the broad wavelength range from X-ray to NIR. We report the succcess in fabrication of Ta/Al-AlOx-Al/Ta and Nb/Al-AlOx-Al/Nb micro structure deposited on sapphire substrates using various techniques including UV photolithography, DC Sputtering, RIE, and PECVD technique. The characterization experiment was undertaken in an Adiabatic Demagnetization Refrigerator at an operating temperature below 50mK. The details of experimental investigations for electrical characterization of STJ of $20\sim80{\mu}m$ in side-lengths are discussed. The measured I-V curves were used to derive The detector performance indicators such as energy gap, energy resolution, normal resistance, normal resistivity, dynamic resistance, dynamic resistivity, and quality factor.

  • PDF

The Safety Analysis under failure of the 1st and 2ne Suspension Elements of the Next Generation High-speed Train model (차세대 고속철도 차량 모델의 1.2차 현가요소의 고장 발생 시 안전성 해석)

  • Kim, Ji-Young;Park, Tae-Won;Yoon, Ji-Won;Cho, Jae-Ik
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.984-988
    • /
    • 2010
  • In Korea, the next generation high-speed train, whose target is maximum speed of 400km/h and operating speed of 370km/h, has been developed since 2007. In this paper, the safety of the next generation high-speed train is compared UIC 518OR under the malfunctioning situation of the suspension system. The bogie of the next generation high-speed train has two suspensions. Two different vehicle models of the next generation high-speed train are created by using VAMPIRE and ADAMS/Rail, which are specialized to design railway vehicle. And Those models are showed same dynamic properties. First of all, the sensitivity analysis of ModelCenter is performed using model of VAMPIRE. One suspension element which has significant effects on the safety are selected by result of the sensitivity analysis. And then, the dynamic analysis when the suspension element is broken is performed using ADAMS/Rail. The 30km track between Pungsegyo and Biryong tunnel in Gyeongbu High-speed Line was used at the dynamic analysis. The estimated value is found by using the normal method of UIC 518OR. The estimated values on the normal/fault state and the limit values of UIC 518OR are compared. Finally, the safety of the next generation high-speed train is verified.

  • PDF