• Title/Summary/Keyword: Operating System for Sensor Nodes

Search Result 36, Processing Time 0.027 seconds

Design of Operating System for Wireless Sensor Nodes with Enhanced Remote Code Update Functionality (원격 코드 업데이트가 가능한 무선 센서 노드용 운영체제)

  • Kim, Chang-Hoon;Cha, Jeong-Woo;Kim, Il-Hyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.1
    • /
    • pp.37-48
    • /
    • 2011
  • Sensor networks monitor the environment, collect sensed data, and relay the data back to a collection point. Although sensor nodes have very limited hardware resources, they require an operating system that can provide efficient resource management and various application environments. In addition, the wireless sensor networks require the code update previously deployed to patch bugs in program and to improve performance of kernel service routines and application programs. This paper presents EPRCU (Easy to Perform Remote Code Update), a new operating system for wireless sensor nodes, which has enhanced functionalities to perform remote code update. To achieve an efficient code update, the EPRCU provides dynamic memory allocation and program memory management. It supports the event-driven kernel, which uses priority-based scheduling with the application of aging techniques. Therefore, the proposed operating system is not only easy to perform wireless communication with the remote code update but also suitable for various sensor network applications.

Design and Implementation of TinyOS Supporting Sensor Transparency of Sensor Nodes (센서노드의 센서 투명성을 지원하는 TinyOS의 확장)

  • So, Sun-Sup;Eun, Seong-Bae;Kim, Byung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2127-2133
    • /
    • 2010
  • In this paper, we proposed an architecture for supporting sensor transparency in sensor node operating systems, design the standard APIs (Application Programming Interfaces) and sensor device abstraction to provide the sensor transparency and implemented the sensor transparency in the TinyOS, the most well known sensor node operating system. With the proposed sensor node operating system which can support the sensor transparency, application developers can develop the target applications independent to each sensor device by using the standard APIs provided by the sensor node operating system and the sensor device manufacturers also can develop sensor device drivers by using the standard hardware interfaces and HAL (Hardware Adaptation Layer) interfaces independent to the specific hardware platform of sensor nodes.

Human Motion Tracking With Wireless Wearable Sensor Network: Experience and Lessons

  • Chen, Jianxin;Zhou, Liang;Zhang, Yun;Ferreiro, David Fondo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.998-1013
    • /
    • 2013
  • Wireless wearable sensor networks have emerged as a promising technique for human motion tracking due to the flexibility and scalability. In such system several wireless sensor nodes being attached to human limb construct a wearable sensor network, where each sensor node including MEMS sensors (such as 3-axis accelerometer, 3-axis magnetometer and 3-axis gyroscope) monitors the limb orientation and transmits these information to the base station for reconstruction via low-power wireless communication technique. Due to the energy constraint, the high fidelity requirement for real time rendering of human motion and tiny operating system embedded in each sensor node adds more challenges for the system implementation. In this paper, we discuss such challenges and experiences in detail during the implementation of such system with wireless wearable sensor network which includes COTS wireless sensor nodes (Imote 2) and uses TinyOS 1.x in each sensor node. Since our system uses the COTS sensor nodes and popular tiny operating system, it might be helpful for further exploration in such field.

Design of efficient location system for multiple mobile nodes in the wireless sensor network

  • Kim, Ki-Hyeon;Ha, Bong-Soo;Lee, Yong-Doo;Hong, Won-Kee
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.81-84
    • /
    • 2005
  • Various design schemes for network using wireless sensor nodes have been widely studied on the several application areas ranging from the real world information collection to environmental monitor. Currently, the schemes are focused on the design of sensor network for low power consumption, power-aware routing protocol, micro miniature operating system and sensor network middleware. The indoor localization system that identifies the location of the distributed nodes in a wireless sensor network requires features dealing with mobility, plurality and other environmental constraints of a sensor node. In this paper, we present an efficient location system to cope with mobility of multiple mobile nodes by designing a location handler that processes location information selectively depending on the nodes' density in a specific region. In order to resolve plurality of multiple mobile nodes, a routing method for the location system is also proposed to avoid the occurrence of overlapped location data.

  • PDF

A design of hybrid detection system with long term operating reliability in underwater (장기 동작 신뢰성을 고려한 수중 복합 탐지 시스템 설계)

  • Chung, Hyun-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.198-205
    • /
    • 2005
  • Recently, the systems using multiple sensors such as magnetic, acoustic and pressure sensor are used for detection of underwater objects or vehicles. Those systems have difficulty of maintenance and repair because they operate underwater. Thus, this paper describes a hybrid detection system with long term operating reliability. This has a multi-signal transmission structure to have a high reliability. First, a signal transmission & receiving part, which transfers data from underwater sensors to land and receive control message from land through optical cable, has 4 multi-path. Second, the nodes for signal transmission are connected dually each other with single-hop construction and sensors are connected to a couple of neighboring nodes. This enables the output signal to transmit from a node to the next node and the next but one node together. Also, the signal from a sensor can be transmitted to two nodes at the same time. Therefore, the system with this construction has high reliability in long term operation because it makes possible to transmit sensor data to another node which works normally although a transmission node or cable in system have some faults.

A Software Architecture for Highly Reconfigurable Sensor Operating Systems (재구성 가능한 고성능 센서 운영체제를 위한 소프트웨어 아키텍처 설계)

  • Kim, Tae-Hwan;Kim, Hie-Cheol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.4
    • /
    • pp.242-250
    • /
    • 2007
  • Wireless sensor networks are subject to highly heterogeneous system requirements in terms of their functionality and performance due to their broad application areas. Though the heterogeneity hinders the opportunity of developing a single universal platform for sensor networks, efforts to provide uniform, inter-operable and scalable ones for sensor networks are still essential for the growth of the industry as well as their technological advance. As a part of our work to develop such a robust platform, this paper presents the software architecture for sensor nodes with focus on our sensor node operating system and its configuration methodology. Addressing principle issues in its design space which includes programming, execution, task scheduling and software layer models, our architecture is highly reconfigurable with respect to system resources and functional requirements and also highly efficient in supporting multi-threading under small system resources.

  • PDF

A Design of Signal Transport System with High Reliability in an Underwater Sensor Array (수중 센서 어레이에서 고 신뢰성을 고려한 신호 전송 시스템 설계)

  • Son Dong-Hwan;Chung Hyun-Ju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.4 s.19
    • /
    • pp.13-19
    • /
    • 2004
  • A system for detecting underwater target demands a high operational reliability because of the difficulty of maintenance and repair when the system has a few troubles during long operating period. Therefore, in this paper, we have proposed a signal transport system with a high reliability in an underwater sensor array system composed of magnetic and acoustic sensors. In this system, the nodes for signal transport are connected dually each other with single-hop construction and a magnetic sensor is connected to a couple of neighboring nodes. This enables the output signal to transport from a node to the next node and the next but one node. Also, the signal from a magnetic sensor can be transported to two nodes at the same time. Thus, the system with this construction makes possible to transport sensor data to another node which works normally when a transport node or cable have some faults and will operate normally although it happens some problems in a few signal transport nodes and connection cables.

Implementing Finite State Machine Based Operating System for Wireless Sensor Nodes (무선 센서 노드를 위한 FSM 기반 운영체제의 구현)

  • Ha, Seung-Hyun;Kim, Tae-Hyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.2
    • /
    • pp.85-97
    • /
    • 2011
  • Wireless sensor networks have emerged as one of the key enabling technologies for ubiquitous computing since wireless intelligent sensor nodes connected by short range communication media serve as a smart intermediary between physical objects and people in ubiquitous computing environment. We recognize the wireless sensor network as a massively distributed and deeply embedded system. Such systems require concurrent and asynchronous event handling as a distributed system and resource-consciousness as an embedded system. Since the operating environment and architecture of wireless sensor networks, with the seemingly conflicting requirements, poses unique design challenges and constraints to developers, we propose a very new operating system for sensor nodes based on finite state machine. In this paper, we clarify the design goals reflected from the characteristics of sensor networks, and then present the heart of the design and implementation of a compact and efficient state-driven operating system, SenOS. We describe how SenOS can operate in an extremely resource constrained sensor node while providing the required reactivity and dynamic reconfigurability with low update cost. We also compare our experimental results after executing some benchmark programs on SenOS with those on TinyOS.

A Java Virtual Machine for Sensor Networks (센서 네트워크를 위한 자바 가상 기계)

  • Kim, Seong-Woo;Lee, Jong-Min;Lee, Jung-Hwa;Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Sensor network consists of a large number of sensor node distributed in the environment being sensed and controlled. The resource-constrained sensor nodes tend to have various and heterogeneous architecture. Thus, it is important to make its software environment platform-independent and reprogrammable. In this paper, we present BeeVM, a Java operating system designed for sensor networks. BeeVM offers a platform-independent Java programming environment with its efficiently executable file format and a set of class APIs for basic operating functions, sensing and wireless networking. BeeVM's high-level native interface and layered network subsystem allow complex program for sensor network to be short and readable. Our platform has been ported on two currently popular hardware platforms and we show its effectiveness through the evaluation of a simple application.

Dynamic Threads Stack Management Scheme for Sensor Operating Systems under Space-Constrained (공간 제약하의 센서 운영체제를 위한 동적 쓰레드 스택관리 기법)

  • Yi, Sang-Ho;Cho, Yoo-Kun;Hong, Ji-Man
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.11
    • /
    • pp.572-580
    • /
    • 2007
  • Wireless sensor networks are sensing, computing and communication infrastructures that allow us to monitor, instrument, observe, and respond to phenomena in the harsh environment. Generally, the wireless sensor networks are composed of many deployed sensor nodes that were designed to be very cost-efficient in terms of production cost. For example, UC Berkeley's MICA motes have only 8-bit CPU, 4KB RAM, and 128KB FLASH memory space. Therefore, sensor operating systems that run on the sensor nodes should be able to operate efficiently in terms of the resource management. In this paper, we present a dynamic threads stack management scheme for space-constrained and multi-threaded sensor operating systems. In this scheme, the necessary stack space of each function is measured on compile-time. Then, the information is used to dynamically allocate and release each function's stack space on run-time. It was implemented in Nano-Qplus sensor operating system. Our experimental results show that the proposed scheme outperforms the existing fixed-size stack allocation mechanism.