• Title/Summary/Keyword: OpenCV-based Python

Search Result 18, Processing Time 0.025 seconds

Implementation to human-computer interface system with motion tracking using OpenCV (OpenCV를 이용한 눈동자 모션인식을 통한 의사소통 시스템 구현)

  • Heo, Seung Won;Lee, Seung Jun;Lee, Hee Bin;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.700-702
    • /
    • 2018
  • In this abstract, introduces a system that enables communication by tracking the pupils of Lou Gehrig's disease patients who are unable to move their bodies. Face and eye pupil tracking perform using OpenCV, and eye movement recognition and character selection by eye movement is obtained using Python. In this paper, you will use the webcams, track your eyes, determine eye movements based on the coordinates of your pupils, and print characters that meet your preferences. It can easily output text messages using Bluetooth.

  • PDF

A Study of Attendance Check System using Face Recognition (얼굴인식을 이용한 출석체크 시스템 연구)

  • Hyeong-Ju, Lee;Yong-Wook, Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1193-1198
    • /
    • 2022
  • As unmanned processing systems emerged socially due to the rapid development of modern society, a face recognition attendance management system using Raspberry Pi 4 was studied and conceived to automatically analyze and process images and produce meaningful results using OpenCV. Based on Raspberry Pi 4, the software is designed with Python 3 and consists of technologies such as OpenCV, Haarcascade, Kakao API, and Google Drive, which are open sources, and can communicate with users in real time through Kakao API for face registration and face recognition.

An Object Tracking Method for Studio Cameras by OpenCV-based Python Program (OpenCV 기반 파이썬 프로그램에 의한 방송용 카메라의 객체 추적 기법)

  • Yang, Yong Jun;Lee, Sang Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.291-297
    • /
    • 2018
  • In this paper, we present an automatic image object tracking system for Studio cameras on the stage. For object tracking, we use the OpenCV-based Python program using PC, Raspberry Pi 3 and mobile devices. There are many methods of image object tracking such as mean-shift, CAMshift (Continuously Adaptive Mean shift), background modelling using GMM(Gaussian mixture model), template based detection using SURF(Speeded up robust features), CMT(Consensus-based Matching and Tracking) and TLD methods. CAMshift algorithm is very efficient for real-time tracking because of its fast and robust performance. However, in this paper, we implement an image object tracking system for studio cameras based CMT algorithm. This is an optimal image tracking method because of combination of static and adaptive correspondences. The proposed system can be applied to an effective and robust image tracking system for continuous object tracking on the stage in real time.

Volume Control using Gesture Recognition System

  • Shreyansh Gupta;Samyak Barnwal
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.161-170
    • /
    • 2024
  • With the technological advances, the humans have made so much progress in the ease of living and now incorporating the use of sight, motion, sound, speech etc. for various application and software controls. In this paper, we have explored the project in which gestures plays a very significant role in the project. The topic of gesture control which has been researched a lot and is just getting evolved every day. We see the usage of computer vision in this project. The main objective that we achieved in this project is controlling the computer settings with hand gestures using computer vision. In this project we are creating a module which acts a volume controlling program in which we use hand gestures to control the computer system volume. We have included the use of OpenCV. This module is used in the implementation of hand gestures in computer controls. The module in execution uses the web camera of the computer to record the images or videos and then processes them to find the needed information and then based on the input, performs the action on the volume settings if that computer. The program has the functionality of increasing and decreasing the volume of the computer. The setup needed for the program execution is a web camera to record the input images and videos which will be given by the user. The program will perform gesture recognition with the help of OpenCV and python and its libraries and them it will recognize or identify the specified human gestures and use them to perform or carry out the changes in the device setting. The objective is to adjust the volume of a computer device without the need for physical interaction using a mouse or keyboard. OpenCV, a widely utilized tool for image processing and computer vision applications in this domain, enjoys extensive popularity. The OpenCV community consists of over 47,000 individuals, and as of a survey conducted in 2020, the estimated number of downloads exceeds 18 million.

A Study on the Autonomous Driving Algorithm Using Bluetooth and Rasberry Pi (블루투스 무선통신과 라즈베리파이를 이용한 자율주행 알고리즘에 대한 연구)

  • Kim, Ye-Ji;Kim, Hyeon-Woong;Nam, Hye-Won;Lee, Nyeon-Yong;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.689-698
    • /
    • 2021
  • In this paper, lane recognition, steering control and speed control algorithms were developed using Bluetooth wireless communication and image processing techniques. Instead of recognizing road traffic signals based on image processing techniques, a methodology for recognizing the permissible road speed by receiving speed codes from electronic traffic signals using Bluetooth wireless communication was developed. In addition, a steering control algorithm based on PWM control that tracks the lanes using the Canny algorithm and Hough transform was developed. A vehicle prototype and a driving test track were developed to prove the accuracy of the developed algorithm. Raspberry Pi and Arduino were applied as main control devices for steering control and speed control, respectively. Also, Python and OpenCV were used as implementation languages. The effectiveness of the proposed methodology was confirmed by demonstrating effectiveness in the lane tracking and driving control evaluation experiments using a vehicle prototypes and a test track.

Development of Stamping Die Quality Inspection System Using Machine Vision (머신 비전을 이용한 금형 품질 검사 시스템 개발)

  • Hyoup-Sang Yoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.181-189
    • /
    • 2023
  • In this paper, we present a case study of developing MVIS (Machine Vision Inspection System) designed for exterior quality inspection of stamping dies used in the production of automotive exterior components in a small to medium-sized factory. While the primary processes within the factory, including machining, transportation, and loading, have been automated using PLCs, CNC machines, and robots, the final quality inspection process still relies on manual labor. We implement the MVIS with general-purpose industrial cameras and Python-based open-source libraries and frameworks for rapid and low-cost development. The MVIS can play a major role on improving throughput and lead time of stamping dies. Furthermore, the processed inspection images can be leveraged for future process monitoring and improvement by applying deep learning techniques.

A Study on Raspberry Pi and OCR-based Vehicle License Plate Recognition Portable Module Development (라즈베리파이와 OCR기반의 포터블 차량 번호판 인식기 모듈 개발에 관한 연구)

  • Kwon, Hyeok-Ho;Park, Sung-Hyun;Im, Jun-Ho;Jang, Sung-Won;Kwak, Tae-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.615-618
    • /
    • 2019
  • 이 모듈은 오픈소스인 Tesseract OCR 및 Open CV 라이브러리와 Raspberry Pi를 사용하여 저렴한 비용으로 구현합니다. 컴팩트한 사이즈로 사람이 직접 들고 움직이면서도 사용이 가능하며 사용자의 니즈에 따라서 한 곳에 위치하여도 사용 가능합니다. Open CV 라이브러리를 사용하여 이미지 이진화, 노이즈 필터링 후에 흑백 이미지를 만들고 윤곽선 검출 알고리즘을 통해서 번호판 영역을 추출하여 Tesseract OCR 엔진을 사용해서 차량 번호판이 추출된 이미지에서 차량 번호를 인식 합니다. 인식된 번호는 Tkinter 와 Python, 데이터베이스를 활용하여 구현된 GUI프로그램을 통해서 유료주차장(선불, 후불) 또는 아파트에서 사용할 수 있는 주차장 관리 서비스를 함께 제공합니다.

Detection of corrosion on steel plate by using Image Segmentation Method (영상분할법을 이용한 강판상의 부식 감지)

  • Kim, Beomsoo;Kim, Yeonwon;Yang, Jeonghyeon
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.2
    • /
    • pp.84-89
    • /
    • 2021
  • The visual inspection method is widely used for corrosion damage analysis of steel plate due to the cost-efficient, fast and reasonably accurate results. However, visual inspection of corrosion deteriorated degree has a problem that the reliability of results differs depending on the inspector's individual knowledge and experience. In this study, we evaluated the degree of corrosion from a given image by using image segmentation method based on the grabcut and HSV(Hue, Saturation, Value) color image processing techniques for the development of an automatic inspection tool. The code written in Python based OpenCV-python libraries was used to categorize the images.

Development of Face Recognition System based on Real-time Mini Drone Camera Images (실시간 미니드론 카메라 영상을 기반으로 한 얼굴 인식 시스템 개발)

  • Kim, Sung-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.17-23
    • /
    • 2019
  • In this paper, I propose a system development methodology that accepts images taken by camera attached to drone in real time while controlling mini drone and recognize and confirm the face of certain person. For the development of this system, OpenCV, Python related libraries and the drone SDK are used. To increase face recognition ratio of certain person from real-time drone images, it uses Deep Learning-based facial recognition algorithm and uses the principle of Triples in particular. To check the performance of the system, the results of 30 experiments for face recognition based on the author's face showed a recognition rate of about 95% or higher. It is believed that research results of this paper can be used to quickly find specific person through drone at tourist sites and festival venues.

Image Denoising Methods based on DAECNN for Medication Prescriptions (DAECNN 기반의 병원처방전 이미지잡음제거)

  • Khongorzul, Dashdondov;Lee, Sang-Mu;Kim, Yong-Ki;Kim, Mi-Hye
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.17-26
    • /
    • 2019
  • We aimed to build a patient-based allergy prevention system using the smartphone and focused on the region of interest (ROI) extraction method for Optical Character Recognition (OCR) in the general environment. However, the current ROI extraction method has shown good performance in the experimental environment, but the performance in the real environment was not good due to the noisy background. Therefore, in this paper, we propose the compared methods of reducing noisy background to solve the ROI extraction problem. There five methods used as a SMF, DIN, Denoising Autoencoder(DAE), DAE with Convolution Neural Network(DAECNN) and median filter(MF) with DAECNN (MF+DAECNN). We have shown that our proposed DAECNN and MF+DAECNN methods are 69%, respectively, which is relatively higher than the conventional DAE method 55%. The verification of performance improvement uses MSE, PSNR and SSIM. The system has implemented OpenCV, C++ and Python, including its performance, is tested on real images.