• Title/Summary/Keyword: Open crack

Search Result 172, Processing Time 0.028 seconds

A Study on Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack and Moving Mass (크랙과 이동질량을 가진 유체유동 단순지지 파이프의 동특성에 관한 연구)

  • Yoon, Han-Ik;Jin, Jong-Tae;Son, In-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.419-426
    • /
    • 2004
  • In this paper, studied about the effect of open crack and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass, the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. Therefore, the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow is increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The position of the crack is located in the middle point of the pipe, the mid-span deflection of simply supported pipe presents maximum deflection.

A technique for capturing structural crack geometry in numerical simulation based on the invariant level set method

  • Tao Wang;Shangtao Hu;Menggang Yang;Shujun Fang
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.243-254
    • /
    • 2023
  • Engineering structures usually suffer from cracks. The crack geometry has an influence on the structural mechanical properties and subsequent crack propagations. However, as an extensively utilized method in fracture analysis, the extended finite element method provided by Abaqus fails to output the specific location and dimensions of fractures. In this study, a technique to capture the crack geometry is proposed. The technique is based on the invariant level set method (I-LSM), which can avoid updating the level set function during crack development. The solution is achieved by an open-source plug-in programmed by Python. Three examples were performed to verify the effectiveness and robustness of the program. The result shows that the developed program can accurately output the crack geometry in both the 2D and 3D models. The open-source plug-in codes are included as supplementary material.

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.5-14
    • /
    • 1999
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

An Efficient Modeling Method for Open Cracked Beam Structures (열린 균열이 있는 보의 효율적 모델링 방법)

  • Kim, M. D.;Park, S. W.;S. W. Hong;Lee, C. W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.372.2-372
    • /
    • 2002
  • This paper presents an efficient modeling method fur open cracked beam structures. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of open cracks. The proposed method adopts the exact dynamic element method (EDEM) to avoid the difficulty and numerical errors in association with re-meshing the structure. The proposed method is rigorously compared with a commercial finite element code. (omitted)

  • PDF

A review of experimental and numerical studies on crack growth behaviour in rocks with pre-existing flaws

  • G. Sivakumar;V.B. Maji
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.333-366
    • /
    • 2023
  • Rock as a mass generally exhibits discontinuities, commonly witnessed in rock slopes and underground structures like tunnels, rock pillars etc. When these discontinuities experiences loading, a new crack emerges from them which later propagates to a macro scale level of failure. The failure pattern is often influenced by the nature of discontinuity, geometry and loading conditions. The study of crack growth in rocks, namely its initiation and propagation, plays an important role in defining the true strength of rock and corresponding failure patterns. Many researchers have considered the length of the discontinuity to be fully persistent on rock or rock-like specimens by both experimental and numerical methods. However, only during recent decades, there has been a substantial growth in research interest with non-persistent discontinuities where the crack growth and its propagation phenomenon were found to be much more complex than persistent ones. The non-persistence fractures surface is generally considered to be open and closed. Compared to open flaws, there is a difference in crack growth behaviour in closed or narrow flaws due to the effect of surface closure between them. The present paper reviews the literature that has contributed towards studying the crack growth behaviour and its failure characteristics on both open and narrow flaws subjected to uniaxial and biaxial compression loading conditions.

A Study on Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack and Moving Mass (크랙과 이동질량을 가진 유체유동 단순지지 파이프의 동특성에 관한 연구)

  • Son, In-Soo;Ahn, Sung-Jin;Yoon, Han-Ik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1625-1630
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of the transverse open cracks and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass, the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. that is, the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow is increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The position of the crack is middle point of the pipe, the mid-span deflection of simply supported pipe presents maximum deflection.

  • PDF

Modal Analysis of a Rotating Packet Blade System having a Crack (한 개의 크랙을 가진 회전하는 패킷 블레이드 시스템의 진동해석)

  • Kwon, Seung-Min;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1244-1251
    • /
    • 2009
  • In this paper the vibrational behavior of a multi-packet blade system having a cracked blade is investigated. Each blade is assumed as a slender cantilever beam. The coupling stiffness effect that originates from either disc flexibility or shroud is considered in the modeling. Hybrid deformation variables are employed to derive the equations of motion. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. In the paper, the results of the change in modal parameters due to crack appearance are presented. The influence of the crack parameters, especially of the changing location of the crack is examined.

Vibration Analysis of Cantilever Beams Having a Concentrated Tip Mass and a Crack (끝단 집중질량과 크랙을 가진 외팔보의 진동 해석)

  • Kim, Kyung-Ho;Eom, Seung-Man;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1360-1365
    • /
    • 2006
  • In this paper the vibration analysis of cantilever beams having a concentrated tip mass and an open crack are performed. The influences of a concentrated tip mass, the crack depth, and the crack position on the natural frequencies of the cracked cantilever beam are investigated by a numerical method. The cracked cantilever beam is modeled based on the Euler-Bernoulli beam theory. The flexibility due to crack is calculated using a fracture mechanics theory. The crack is assumed to be opened during the vibrations. The results obtained by the present method were compared with experimental results to verify the theory. As inspected, as the crack depth and the concentrated tip mass increase, the natural frequencies of the beam decrease. In general, the natural frequencies of the cantilever beam are more sensitive to the depth of the crack than the position of the crack.

  • PDF

Influence of Serial Moving Masses on Dynamic Behavior of Simply Supported Beam with Crack (크랙을 가진 단순지지 보의 동특성에 미치는 이동질량의 영향)

  • 윤한익;김영수;손인수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.555-561
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported Euler-Bernoulli beams with the moving masses. The influences of the velocities of moving masses, the distance between the moving masses and a crack have been studied on the dynamic behavior of a simply supported beam system by numerical method. The Presence of crack results In large deflection of beam. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. Totally, as the velocity of the moving masses and the distance between the moving masses are increased, the mid-span deflection of simply supported beam with the crack is decreased.

Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack (크랙을 가진 유체유동 단순지지 파이프의 동특성 해석)

  • 윤한익;최창수;손인수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.562-569
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported pipe conveying fluid subject to the moving mass. The equation of motion Is derived by using Lagrange’s equation. The influences of the velocity of moving mass and the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The presence of crack results In higher deflections of pipe. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. Totally. as the velocity of fluid flow and the crack severity are increased, the mid-span deflection of simply supported pipe conveying fluid Is Increased. The time which produce the maximum dynamic deflection of the simply supported pipe Is delayed according to the increment of the crack severity.