• Title/Summary/Keyword: Open Spectrum Access

Search Result 8, Processing Time 0.023 seconds

Legal Reform Agenda for Open Spectrum Access (개방형 전파 사용을 위한 법 제도 개선 방안)

  • Lee, Hee Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.995-1004
    • /
    • 2014
  • Due to the development of spectrum use technology and various services based on radio spectrum, the scarcity of spectrum has been heightened. In this circumstances both the efficiency and fairness of spectrum use need to be raised. Open spectrum access can be a useful approach for both goal. For the open spectrum access the legal institution needs to be reformed to enable it. From the starting point of spectrum use till the end of spectrum use there can be various issues of rights and obligations. So the legal institution for various legal status of spectrum use and establishment and continuous management of DB and fast and respectable dispute resolution mechanism is required.

An Socio-Economic Effect Analysis of Using Open Spectrum in Korea (개방형 스펙트럼 이용의 사회경제적 파급 효과 분석)

  • Park, Seok-Ji;Park, Duk-Kyu;Kim, Chang-Joo;Kang, Young-Heung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.983-994
    • /
    • 2014
  • In this paper, we analyze the telecom services and their socio-economic effect of using open spectrum, which is to access sharing spectrum. For this, we suggest a concept and a classification of open spectrum as spectrum access model and make a survey for analyzing the socio-economic effect of spectrum, 2,605 MHz which is candidated for sharing between 2.9~5.925 Hz in Korea. From survey results, we propose Mobile Telecommunications Assist Service and WiFi as the most effective services and Smart Car Service and M2M, IoT, and RFID/USN Service as the effective services to open spectrum.

Spectrum Access Model Proposal for Frequency Sharing in 3~4 GHz (3~4 GHz 대 주파수 공동사용을 위한 스펙트럼 액세스 모델 제안)

  • Kang, Young-Heung;Lee, Dae-Young;Park, Duk-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.821-827
    • /
    • 2014
  • Many researches on the usage of shared spectrum have continuously been carried out to solve the recent frequency shortage problem and to use efficiently the spectrum without interference. Also, exponential mobile data growth and the solutions needed to address this challenge are parallel key objectives addressed in many countries. Spectrum policy innovation to meet this challenge is the ASA/LSA (Authorized Shared Access/Licensed Shared Access), which is the best access model to employ the small cell technology to meet this mobile traffic growth. Because 3.5 GHz bands is considered as the ASA/LSA frequency, in this paper, we propose the SAM(Spectrum Access Model) in 3~4 GHz bands to estimate the available ASA/LSA bands and to open more free spectrum. These results are utilized as the data to develop the SAM for the small cell and the open frequency in future.

Sequential fusion to defend against sensing data falsification attack for cognitive Internet of Things

  • Wu, Jun;Wang, Cong;Yu, Yue;Song, Tiecheng;Hu, Jing
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.976-986
    • /
    • 2020
  • Internet of Things (IoT) is considered the future network to support wireless communications. To realize an IoT network, sufficient spectrum should be allocated for the rapidly increasing IoT devices. Through cognitive radio, unlicensed IoT devices exploit cooperative spectrum sensing (CSS) to opportunistically access a licensed spectrum without causing harmful interference to licensed primary users (PUs), thereby effectively improving the spectrum utilization. However, an open access cognitive IoT allows abnormal IoT devices to undermine the CSS process. Herein, we first establish a hard-combining attack model according to the malicious behavior of falsifying sensing data. Subsequently, we propose a weighted sequential hypothesis test (WSHT) to increase the PU detection accuracy and decrease the sampling number, which comprises the data transmission status-trust evaluation mechanism, sensing data availability, and sequential hypothesis test. Finally, simulation results show that when various attacks are encountered, the requirements of the WSHT are less than those of the conventional WSHT for a better detection performance.

A Survey on Spectrum Sharing in Cognitive Radio Networks

  • Xu, Tangwen;Li, Zhenshuang;Ge, Jianhua;Ding, Haiyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3751-3774
    • /
    • 2014
  • With the rapid development of wireless communication, the confliction between the scarce frequency resources and the low spectral efficiency caused by the stationary spectrum sharing strategies seriously restricts the evolution of the future mobile communication. For this purpose, cognitive radio (CR) emerges as one of the most promising inventions which can overcome the spectrum shortage. As the key technology and main objective of CR, spectrum sharing can make full use of the limited spectrum, alleviate the scarcity of frequency resources and improve the system utilities, playing thereby an important role in improving the system performance of cognitive radio networks (CRNs). In this survey, the spectrum sharing in CRNs is discussed in terms of the sharing process, mainstream sharing technologies and spectrum sharing models. In particular, comparisons of different spectrum sharing strategies are concluded, as well as that of different spectrum sensing schemes in sharing procedure. Moreover, some application examples of the spectrum sharing in CRNs, such as smart grid, public safety, cellular network and medical body area networks are also introduced. In addition, our previous related works are presented and the open research issues in the field of spectrum sharing are stated as well.

Transport Protocols in Cognitive Radio Networks: A Survey

  • Zhong, Xiaoxiong;Qin, Yang;Li, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3711-3730
    • /
    • 2014
  • Cognitive radio networks (CRNs) have emerged as a promising solution to enhance spectrum utilization by using unused or less used spectrum in radio environments. The basic idea of CRNs is to allow secondary users (SUs) access to licensed spectrum, under the condition that the interference perceived by the primary users (PUs) is minimal. In CRNs, the channel availability is uncertainty due to the existence of PUs, resulting in intermittent communication. Transmission control protocol (TCP) performance may significantly degrade in such conditions. To address the challenges, some transport protocols have been proposed for reliable transmission in CRNs. In this paper we survey the state-of-the-art transport protocols for CRNs. We firstly highlight the unique aspects of CRNs, and describe the challenges of transport protocols in terms of PU behavior, spectrum sensing, spectrum changing and TCP mechanism itself over CRNs. Then, we provide a summary and comparison of existing transport protocols for CRNs. Finally, we discuss several open issues and research challenges. To the best of our knowledge, our work is the first survey on transport protocols for CRNs.

Distributed Coordination Protocol for Ad Hoc Cognitive Radio Networks

  • Kim, Mi-Ryeong;Yoo, Sang-Jo
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.51-62
    • /
    • 2012
  • The exponential growth in wireless services has resulted in an overly crowded spectrum. The current state of spectrum allocation indicates that most usable frequencies have already been occupied. This makes one pessimistic about the feasibility of integrating emerging wireless services such as large-scale sensor networks into the existing communication infrastructure. Cognitive radio is an emerging dynamic spectrum access technology that can be used for flexibly and efficiently achieving open spectrum sharing. Cognitive radio is an intelligent wireless communication system that is aware of its radio environment and that is capable of adapting its operation to statistical variations of the radio frequency. In ad hoc cognitive radio networks, a common control channel (CCC) is usually used for supporting transmission coordination and spectrum-related information exchange. Determining a CCC in distributed networks is a challenging research issue because the spectrum availability at each ad hoc node is quite different and dynamic due to the interference between and coexistence of primary users. In this paper, we propose a novel CCC selection protocol that is implemented in a distributed way according to the appearance patterns of primary systems and connectivity among nodes. The proposed protocol minimizes the possibility of CCC disruption by primary user activities and maximizes node connectivity when the control channel is set up. It also facilitates adaptive recovery of the control channel when the primary user is detected on that channel.

Applications of Intelligent Radio Technologies in Unlicensed Cellular Networks - A Survey

  • Huang, Yi-Feng;Chen, Hsiao-Hwa
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2668-2717
    • /
    • 2021
  • Demands for high-speed wireless data services grow rapidly. It is a big challenge to increasing the network capacity operating on licensed spectrum resources. Unlicensed spectrum cellular networks have been proposed as a solution in response to severe spectrum shortage. Licensed Assisted Access (LAA) was standardized by 3GPP, aiming to deliver data services through unlicensed 5 GHz spectrum. Furthermore, the 3GPP proposed 5G New Radio-Unlicensed (NR-U) study item. On the other hand, artificial intelligence (AI) has attracted enormous attention to implement 5G and beyond systems, which is known as Intelligent Radio (IR). To tackle the challenges of unlicensed spectrum networks in 4G/5G/B5G systems, a lot of works have been done, focusing on using Machine Learning (ML) to support resource allocation in LTE-LAA/NR-U and Wi-Fi coexistence environments. Generally speaking, ML techniques are used in IR based on statistical models established for solving specific optimization problems. In this paper, we aim to conduct a comprehensive survey on the recent research efforts related to unlicensed cellular networks and IR technologies, which work jointly to implement 5G and beyond wireless networks. Furthermore, we introduce a positioning assisted LTE-LAA system based on the difference in received signal strength (DRSS) to allocate resources among UEs. We will also discuss some open issues and challenges for future research on the IR applications in unlicensed cellular networks.