• Title/Summary/Keyword: Open Die

Search Result 99, Processing Time 0.018 seconds

The Incipient Deformation Analysis for Plane Strain Open-Die Forging Processes with V-shaped Dies Using the Force Balance Method (힘평형법을 이용한 V-형다이 평면변형 자유형 단조공정의 초기변형 해석)

  • Lee, J.H.;Kim, B.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.109-117
    • /
    • 1993
  • Force balance method is employed to predict forging information such as forging load, tool pressure and normal stress at the surface of tangential velocity discontinuity. The incipient stages of deformation for the plane strain forging of rectangular billets in V-shaped dies of different semi-angles are analysed. To construct an approximate model for the analysis of deformation by the force balance method in the incipient deformation stages, slip-line field is used. When the deformation mode by slip-line method is the same as that by force balance method, the slip-line method and the force balance method give identical solutions. The effects of die angle, coefficient of friction, billet geometries and deforma- tion characteristics are also investigated. In order to verify the validity of force balance analysis, the rigid-plastic finite element simulation for the various forgig parameters are performed and performed and find to be in good agreement.

  • PDF

The manufacturing process analysis and design of the forged turbine rotor by using the numerical analysis technique (수치해석 기법을 이용한 발전용 단조 로타의 제조 공정 분석 및 공정 설계)

  • 조종래;김동권;이정호;이부윤;이명렬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.06a
    • /
    • pp.25-34
    • /
    • 1995
  • Large-scale low-alloy steel shafts, used in the manufacture of steam turbine, are produced by ingot making, forging and heat treatemtn processes. The numerical analysis techniques are introduced to analyze and design the working conditions in each process. The solidification of a steel ingot is studied through the finite element method. The open die press forging and quenching process are simulated by viscoplastic and elastic-plastic finite element method, respectively. Thus numerical analysis techniques are very useful tools to study favorable working conditions for better and more desirable product quality.

Finite Element Analysis with Viscoplastic Formulation in Open-Die RTP Process (개방형 RTP(Rapid Thermal Pressing)공정의 점소성 유한요소해석)

  • Son J. W.;Rhim S. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.284-289
    • /
    • 2004
  • Since polymer materials at elevated temperatures are usually rate-sensitive, the analysis of RTP process requires considering the effect of the rate-dependent. The material behavior that exhibits rate-sensitivity is called visco-plastic. A two-dimensional visco-plastic finite element formulation which constitutive equation is based on the formulation proposed by Perzyna is presented. This Paper is purposed to calcuate pressure distribution on PMMA in compression process and to predict the relationship with defects after demolding process. This paper analyzes, both analytically and numerically, the pressure distributions on the surface of PMMA during open-die RTP process. In this research, PMMA is used to be simulated at $110^{\circ}C$ near the transition temperature.

  • PDF

Development of Stamping Die Quality Inspection System Using Machine Vision (머신 비전을 이용한 금형 품질 검사 시스템 개발)

  • Hyoup-Sang Yoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.181-189
    • /
    • 2023
  • In this paper, we present a case study of developing MVIS (Machine Vision Inspection System) designed for exterior quality inspection of stamping dies used in the production of automotive exterior components in a small to medium-sized factory. While the primary processes within the factory, including machining, transportation, and loading, have been automated using PLCs, CNC machines, and robots, the final quality inspection process still relies on manual labor. We implement the MVIS with general-purpose industrial cameras and Python-based open-source libraries and frameworks for rapid and low-cost development. The MVIS can play a major role on improving throughput and lead time of stamping dies. Furthermore, the processed inspection images can be leveraged for future process monitoring and improvement by applying deep learning techniques.

FE-Analysis on void closure behavior during hot open die forging process (열간 자유단조 공정시 내부 기공 압착 거동에 관한 해석)

  • Kwon, Y.C.;Lee, J.H.;Lee, S.W.;Jung, Y.S.;Kim, N.S.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.160-164
    • /
    • 2007
  • In the steel industry, there is a need to produce large forged parts for the automobile industries, the flight and shipping industries ad military industries. In the steel-industry application, a cogging technique for cast ingots is required, because the major parts are needed as one large body in order to obtain higher quality. Therefore, cogging process is the primary step in manufacturing of practically large open-die forging. In the cogging process, internal voids have to be eliminated as defects, The present work is concerned with the elimination of the internal voids in large ingots so as obtain sound products. In this study, hot compression tests were carried out to obtain the flow stress of cast microstructure at different temperature and strain rates. The FEM analysis are performed to investigate the overlap defect of cast ingots during cogging stage. The measure flow stress data were used to simulate the cogging process of cast ingot using the practical material properties. Also the analysis of void closure are performed by using the $DEFORM^{TM}$-3D. The calculated results of void closure behavior are compared with the measured results before and after cogging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the void closure can be investigated by the comparison of practical experiment and numerical analysis.

  • PDF

A Door Frame for Wind Turbine Towers Using Open-Die Forging and Ring-Rolling Method (열간자유단조와 링롤링공법을 이용한 풍력발전기용 도아프레임 개발)

  • Kwon, Yong Chul;Kang, Jong Hun;Kim, Sang Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.721-727
    • /
    • 2015
  • The mechanical components for wind turbines are mainly manufactured using open-die forging. This research introduces an advanced forging method to produce the door frame of the tubular wind turbine tower. The advantages of this new forging method are an increase in the raw material utilization ratio and a reduction in energy cost. In the conventional method, the door frame is hot forged with a hydraulic press and amounts of material are machined out because of the shape difference between the forged and final machine products. The proposed forging method is composed of hot forging and ring rolling processes to increase the material utilization ratio. The effectiveness of this new forging method is deeply related to the ring rolled blank dimension before the final forging. To get the optimal ring rolled blank, forged shape prediction using the finite element analysis method was applied. The forged dimensions produced by the new forging method were verified through the first article production.

Design guides for enhancing finger tactile recognition of plastic icon shapes (플라스틱 아이콘 형상의 손가락 촉지각률 향상을 위한 설계 가이드)

  • Kim, Huhn;Lee, Won Y.
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.59-63
    • /
    • 2012
  • In various industries, tactile recognition has been one of the important ways in displaying information because peoples like to touch and feel. Especially, how much the tactile information is efficiently recognizable is crucial for visually impaired persons in their daily lifes. However, existing design guidelines are insufficient to lead good tactile recognition. In this study, an experiment was performed to investigate proper tactile shapes (relievo / intaglio vs. filled / unfilled), sizes and depths for efficient tactile recognition. Moreover, this study scrutinized whether the recognition speed or error was varied depending on the type of displayed symbols (open vs. closed types) in tactile. The experimental results revealed that the 'relieve-filled' shape type was more rapidly recognizable than the other shapes, and the 'closed' type symbols (e.g., ${\square }$. ${\bigcirc}$) were more robustly recognizable than the 'open' type symbols (e.g, +, ^). Several design guidelines were presented based on the results. These guidelines can be applied to the design of tactile buttons in the devices that users should control them without visual attention, such as car steering wheels or MP3 players.

  • PDF

Analysis of Void Closure in the Upsetting Process of Large-Ingot (대형강괴 업셋팅공정의 기공압착 해석)

  • 박치용;조종래;양동열;김동진;박일수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1877-1889
    • /
    • 1992
  • Upsetting is performed in open-die press forging to deform metal in all directions in order to enhance soundness of a product and reduce directionality of properties caused by casting. It is necessary to ensure sufficient forging ratio for subsequent cogging operations and consolidate the void along the centerline. To obtain these benefits, the upper die shape (dome and dished shape) is considered as an upsetting parameter. Thermo-viscoplastic finite element analysis has been carried out so as to understand the influence of upper die shape on the effective strain, hydrostatic stress and temperature in the upset-forged ingots without internal defects. The analysis is focused on the investigation into internal void closure in ingots with pipe holes and circular voids. The computational results have shown that the volume fraction of the void is independent of the circular void size and the closure of internal voids is much more influenced by the effective strain than the hydrostatic stress around the void. It is finally suggested that the height reduction must be over 35% for consolidation of internal voids.

Status and innovation plan of manufacturing technology in plastics engineering - focusing on thermoplastics, composites and molds - (플라스틱 공학에서 제조 기술의 현황과 혁신 방안 - 열가소성수지, 복합재료와 금형을 중심으로 -)

  • Kim, Sun-Kyoung
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.1-10
    • /
    • 2021
  • In this study, the current state of the plastics industry has been examined. The direction of development and innovation is reviewed and commented. The technical statuses of various sectors such as thermoplastic resin, composite material, mold engineering, and simulation have been scrutinized. In addition, the industrial status of each sector has been reviewed. Then, the challenges that the plastics manufacturing industry has to deal with have been discussed. Especially, the situation in Republic of Korea has been elaborated in detail. Based on the discussion, an open innovation strategy has been suggested. It has been argued in this work that the open innovation strategy will enables efficient funding and development by avoiding resource consuming rent seeking.

Forging process design of cup shaped large forging using finite element method (유한요소해석을 통한 컵형상 대형단조품의 성형공법 설계)

  • Kang, Jong Hun;Kim, Hyun Jun;Lee, Hyoung Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.729-734
    • /
    • 2015
  • This research developed a new deep-bore, cup-shape, large forging process by combining die forging and free forging methods. In the proposed process, a preform for cup-shape large forging is produced by die forging, and a product with a deep bore is finally manufactured using an open die forging method, which is generally produced using a backward extrusion process. Finite element analysis results showed a higher effective strain distribution with a smaller forging load using the proposed method compared to the backward extrusion method. The production of a prototype with good internal quality using a small press capacity verified the proposed method.