• Title/Summary/Keyword: Onshore Drilling

Search Result 9, Processing Time 0.018 seconds

A Study on the Computational Structural Analysis Using the Field Test Data of Onshore Drilling Mud Motor (육상시추용 드릴링 추진체의 실증시험 데이터를 활용한 전산구조해석에 관한 연구)

  • Park, Sung-Gyu;Kim, Seung-Chan;Kwon, Seong-Yong;Shin, Chul-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.603-609
    • /
    • 2022
  • Bottom hole assembly(BHA) is a key component of the drilling system, consisting of various components and tools(including the drill bit and mud motor) which operate at the bottom of the wellbore and physically drill the rock. This paper investigates the dynamic characteristics of the mud motor which is a drilling propulsion tool. And computational structural analysis is performed to calculate the von-Mises stress and the safety factor of components constituting the mud motor. In this process, the field test data of onshore drilling are used for analysis.

Identification of Hazards for Offshore Drilling through Accident Statistics and JSA-based Risk Reduction (사고 통계 분석을 통한 해양 시추작업 위험요소 제시 및 JSA 기반 위험저감 방안)

  • Noh, Hyonjeong;Kang, Kwangu;Park, Min-Bong;Kim, Hyungwoo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.865-874
    • /
    • 2020
  • Offshore drilling units have a very dangerous working conditions due to the harsh working environment of the ocean and the high possibility of fire or explosion. This study would identify the hazards that emerge from the marine environment in the operation and maintenance phase of offshore drilling units and show how these hazards can be reduced through risk assessment/management. Various risk reduction and management measures were first reviewed, and Job Safety Analysis (JSA) was selected as the risk assessment technique of this study. In order to understand the characteristics of offshore drilling operations, accident statistics of onshore and offshore drilling were analyzed and compared with each other, and major risk factors for offshore drilling were derived. The jobs in which offshore drilling accidents occur more frequently than onshore drilling was analyzed as the job of fastening, transporting and moving pipes and various materials. This result is due to the limited space of the ocean and the work environment that is prone to being shaken by wind, waves and ocean currents. Based on these statistical results, the job of picking and making up drill pipes was selected as a high-risk job, and JSA was performed as an example. A detailed safety check procedure is proposed so that workers can fully recognize the danger and perform work in a safe state that has been confirmed.

Evaluation of Flow Characteristics of Mud Treatment System for Onshore Drilling (육상시추용 Mud treatment system의 유동특성 평가)

  • Kim, Seung-Chan;Chun, Joong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.763-772
    • /
    • 2021
  • Drilling Mud Treatment Systems are widely used for Oil Gas drilling mud circulation, horizontal directional drilling mud recycling, geothermal drilling, mining, coal exploration drilling, water well drilling. Degasser is a device used in drilling to remove gasses from drilling fluid which could otherwise form bubbles. For small amounts of entrained gas in a drilling fluid, the degasser can play a major role of removing small bubbles that a liquid film has enveloped and entrapped. As with the desander, its purpose is to remove unwanted solids from the mud system. The smaller cones allow the desilter to efficiently remove smaller diameter drill solids. In this study, a simulation study is conducted on the degasser of the facility in the Mud Treatment System to conduct a performance review on the gas separation in the mud.

A Study on the Performance Analysis of Degasser System with Vacuum Pump for Onshore and Offshore Drilling (육상 및 해양 시추용 디개서 시스템의 진공펌프 성능해석)

  • Kwon, Seong-Yong;Park, Sung-Gyu;Shin, Chul-Soon;Kim, Seung-Chan;Lim, Hee-Yeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1063-1069
    • /
    • 2022
  • In modern industry, vacuum has grown into an indispensable industrial field. The performance of the vacuum pump in the degasser system among mud treatment system facilities was verified by a numerical analysis method. The degasser system is an equipment for removing the gas contained in the mud, and it is a work process that requires a vacuum. This study analyzed the vacuum pump performance of the degasser used in drilling for resource development of onshore and offshore plants. The vacuum pump used in the degasser system was designed with a discharge rate of 0.099kg/s. The DM(Design Modeler) program of ansys workbench 17.2 was used to modify the model of the vacuum pump used in the degasser system. And for performance analysis, CFX, which is known to be suitable for rotating system analysis, was used. Finally the performance analysis results of the vacuum pump and the prototype performance test results were compared and analyzed.

Onshore Deck Mating for Deepwater Nautilus by Super Lift

  • GAB-REA CHO
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.71-75
    • /
    • 2002
  • 대형 시추구조물의 건조는 보통 드라이도크에서 하거나, 해양에서 선체와 데크를 접합하는 방법을 사용한다. 그러나 적당한 해양 접합장소가 없거나 드라이도크의 공간부족으로 현대중공업에서는 드라이도크나 해양에서의 접합건조 대신 부유식 시추구조물을 지상에서 조립하는 방법을 채택하게 되었다. 현대중공업에서는 세 가지 단계를 통해 지상 데크조립을 수행하였다. 첫 번째는 네 개의 철골구조 리프팅타워 상에서 유압리프팅시스템을 이용하여 데크를 지상으로부터 38m 들어올린다. 두 번째는 마찰을 줄이기 위해 윤활제가 칠해진 합성 플라스틱으로 싸인 미끄럼틀(Skidway)을 이용하여 두 개의 6000톤 짜리 하부구조를 데크 아래로 끌어 들인다. 마지막 단계로 데크와 하부구조를 단단히 결합시킨다. 이 과정에 2주일이 소요되었으며 일련의 작업을 거쳐 중량 25,500톤급의 Deepwater Nautilus (RBS-8M) 시추선을 무사히 바다 위로 인도하였다. RBS-8M의 데크결합에 Super Lift를 적용하여 성공시킨 사례를 통해 현대중공업의 초대형 시추구조물 건조방식이 이상적이고, 작업 공기나 원가 측면에서 우위가 있음을 시사하고 있으며 이렇게 건조작업의 대부분을 지상에서 수행한 과정을 통해 작업관리, 품질관리, 일정관리에도 좋은 결과를 가져올 수 있었다.

Numerical Study of Agitation Performance in the Mud Tank of On-shore Drilling (육상 시추용 머드탱크의 교반성능에 대한 수치해석적 연구)

  • Hwang, Jong-Duck;Ku, Hak-Keun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.617-626
    • /
    • 2020
  • The drilling mud is essentially used in oil and gas development. There are several roles of using the drilling mud, such as cleaning the bottomhole, cooling and lubricating the drill bit and string, transporting the cuttings to the surface, keeping and adjusting the wellbore pressure, and preventing the collapse of the wellbore. The fragments from rocks and micro-sized bubbles generated by the high pressure are mixed in the drilling mud. The systems to separate those mixtures and to keep the uniformly maintained quality of drilling mud are required. In this study, the simulation is conducted to verify the performance of the mud tank's agitation capacity. The primary role of the mud tank is the mixing of mud at the surface with controlling the mud condition. The container type is chosen as a mud tank pursuing efficient transport and better management of equipment. The single- and two-phase simulations about the agitation in the mud tank are performed to analyze and identify the inner flow behavior. The convergence of results is obtained for the vertical- and axis-direction velocity vector fields based on the grid-dependency tests. The mixing time analysis depending on the multiphase flow conditions indicates that the utilization of a two-stepped impeller with a smaller size provides less time for mixing. This study's results are expected to be utilized as the preliminary data to develop the mixing and integrating equipment of the onshore drilling mud system.

Structural Safety in Installation System for Monopile Basic Construction of Offshore Wind Power Generators (해상풍력발전기 모노파일 기초공사용 설치시스템 구조 안전성)

  • Cha, Tae-Hyeong;Chung, Won-Jee;Lee, Hyun-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Recently, the development of offshore wind farms based on past technical experiences from onshore wind turbine installations has become a worldwide issue. This study investigated the technical issues related to offshore wind farms and large-diameter monopiles from an economic perspective. In particular, the monopile foundation system (MFS), which is the most important part of the proposed fast construction system, is applied for the first time in Korea, and structural verification is essential because it supports large-diameter monopiles and is in charge of excavation. Therefore, in this study, a rapid construction system for large offshore wind power generators was introduced, and stability verification was performed through the structural analysis of the MFS.

Technical Issues for Offshore Wind-Energy Farm and Monopile Foundation (해상풍력 발전의 기술동향 및 모노파일 기술개발 방향)

  • Choi, Chang-Ho;Cho, Sam-Deok;Kim, Ju-Hyong;Chae, Jong-Gil
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.486-493
    • /
    • 2010
  • Recently, it has been a worldwide issue to develop offshore wind farm based on the past technical experiences of onshore wind turbine installation. In Korea, the government has the wind-energy to be a new-sustainable field of development to bring green-growth in near future and put political and fiscal efforts to support the academic and industrial technical development. Especially, there are much advancement for the fields of turbine, blade, bearing, grid connection, ETC. Correspondingly, technical needs do exist for the offshore foundation installation techniques in geotechnical point of view. Within few years, 2~5MW offshore wind turbines will be constructed at about 30m water depth and it is known that monopiles of D=4~6m are suitable types of foundation. In order to construct offshore wind-turbine foundation, technical developments for drilling machine, design manual, monitoring&maintenance technique are required. This paper presents technical issues with related to offshore wind farm and large diameter monopile in the point of renewable energy development.

  • PDF

Overpressure prediction of the Efomeh field using synthetic data, onshore Niger Delta, Nigeria (합성탄성파 기록을 이용한 나이지리아의 나이저 삼각주 해안 에포메(Efomeh) 지역의 이상고압 예측)

  • Omolaiye, Gabriel Efomeh;Ojo, John Sunday;Oladapo, Michael Ilesanmi;Ayolabi, Elijah A.
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.50-57
    • /
    • 2011
  • For effective and accurate prediction of overpressure in the Efomeh field, located in the Niger delta basin of Nigeria, integrated seismic and borehole analyses were undertaken. Normal and abnormal pore pressure zones were delineated based on the principle of normal and deviation from normal velocity trends. The transition between the two trends signifies the top of overpressure. The overpressure tops were picked at regular intervals from seismic data using interval velocities obtained by applying Dix's approximation. The accuracy of the predicted overpressure zone was confirmed from the sonic velocity data of the Efomeh 01 well. The variation to the depth of overpressure between the predicted and observed values was less than 10mat the Efomeh 01 well location, with confidence of over 99 per cent. The depth map generated shows that the depth distribution to the top of the overpressure zone of the Efomeh field falls within the sub-sea depth range of 2655${\pm}$2m (2550 ms) to 3720${\pm}$2m (2900 ms). This depth conforms to thick marine shales using the Efomeh 01 composite log. The lower part of the Agbada Formation within the Efomeh field is overpressured and the depth of the top of the overpressure does not follow any time-stratigraphic boundary across the field. Prediction of the top of the overpressure zone within the Efomeh field for potential wells that will total depth beyond 2440m sub-sea is very important for safer drilling practice as well as the prevention of lost circulation.