• Title/Summary/Keyword: Onset Speed of Instability

Search Result 25, Processing Time 0.018 seconds

A Study on Proportional and Derivative Control of Fluid Film Journal Bearings (유체 윤활 베어링의 비례 및 미분 제어에 관한 연구)

  • 노병후;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.212-217
    • /
    • 2001
  • This paper presents the stability characteristics of a rotor-bearing system supported by actively controlled hydrodynamic journal bearing. The proportional and derivative controls including coupled motion are adopted for the control algorithm to control the hydrodynamic journal bearing with a circumferentially groove. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis which uses the Reynolds condition. The stability characteristics are investigated with the Routh-Hurwitz criteria using the linear dynamic coefficients which are obtained from the perturbation method. The stability characteristics of the rotor-bearing system supported by active controlled hydrodynamic journal bearing are investigated for various control gain. It is found that the speed at onset of instability is increased for both proportional and derivative control of the bearing, and the proportional and derivative control of coupled motion is more effective than proportional and derivative control of uncoupled motion.

  • PDF

Aero-Induced Vibration Analysis of a Rotating Disk using a Vacuum Chamber (진공 실험을 통한 공기와 회전 디스크의 상호 작용 및 진동 특성)

  • 이승엽;윤동화;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.677-683
    • /
    • 2002
  • The analytical and experimental studies on aerodynamic flutter instability of rotating disks in information storage devices are investigated. The theoretical analysis uses a fluid-structure model where the aerodynamic force on the rotating disk is represented in terms of lift and damping forces. Based on the analytical approach, it is shown that the backward natural frequency of the disk is equal to that of the case without aerodynamic effect at the flutter onset speed. In post-flutter regions, the natural frequencies are larger than those in vacuum conditions without aerodynamic effect. The analytical predictions on the natural frequencies of rotating disks with/without aerodynamic effect are experimentally verified using a vacuum chamber and ASMO optical disks.

  • PDF

A Study about the Pitch Stability of Exploratory Underwater Vehicles (해저탐사잠수정의 연직평면에서의 방향안정성에 관한 연구)

  • 윤점동
    • Journal of the Korean Institute of Navigation
    • /
    • v.11 no.1
    • /
    • pp.93-106
    • /
    • 1987
  • Nowadays natural resources on shore have been almost exhausted all over the world and mankind is beginning searching for unexploited resources on the bed of deep-sea floor. In exploring mineral resources and etc. in the ground of sea-bed, a sumbersible craft is one of the most important tools. These days, the stage of the technique of building and operating an exploring submersible craft is almost alike that of building and operating an airplane in the first years of the nineteen-twenties. At the present time, the problems arising in building and operating a submersible craft can be divided into four parts as follows; 1. How to build a hull that can bear high pressure under deep sea level. 2. How to decide the necessary facilities to be put on it. 3. How to decide the scope of stabilities and maneuvering characteristics of it. 4. On what sea conditions, the devices of launching and recovering it should be designed on the mother-ship. In this paper treating one of the third problems the author made a mathematic formula that can be useful in deciding the scope of dynamic course stability on the vertical plane and actually calculated the onset speed of pitch instability of an exploring craft. With the above mentioned calculations the author demonstrated that the value of $Z_g$ and the speed of a submerged craft are the most important factors in decideing the scope of dynamic stability on the vertical plane.

  • PDF

A Study on Dynamic Characteristics of a Rotor-Bearing System Supported by Actively Controlled Fluid Film Journal Bearing (능동 제어 유체 윤활 베어링으로 지지된 축-베어링 시스템의 동특성에 관한 연구)

  • No, Byeong-Hu;Kim, Gyeong-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.116-121
    • /
    • 2001
  • The paper presents the dynamic characteristics of a rotor-bearing system supported by an actively controlled hydrodynamic journal bearing. The proportional. derivative and integral controls are adopted for the control algorithm to control the hydrodynamic journal bearing with an axial groove. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis, which uses the Reynolds condition. The speed at onset of instability of a rotor-bearing system is increased by both proportional and derivative control of the bearing. The proportional control increases the stability threshold without affecting the whirl ratio. However, for the derivative control of the bearing, increase of stability threshold speed is accompanied by a parallel reduction of the whirl ratio. The integral control has no effect on stability characteristics of hydrodynamic journal bearing. The PD-control is more effective than proportional or derivative control. Results 7how the active control of bearing can be adopted for the stability improvement of a rotor-bearing system.

  • PDF

Prediction of bridge flutter under a crosswind flow

  • Vu, Tan-Van;Lee, Ho-Yeop;Choi, Byung-Ho;Lee, Hak-Eun
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.275-298
    • /
    • 2013
  • This paper presents a number of approximated analytical formulations for the flutter analysis of long-span bridges using the so-called uncoupled flutter derivatives. The formulae have been developed from the simplified framework of a bimodal coupled flutter problem. As a result, the proposed method represents an extension of Selberg's empirical formula to generic bridge sections, which may be prone to one of the aeroelastic instability such as coupled-mode or single-mode (either dominated by torsion or heaving mode) flutter. Two approximated expressions for the flutter derivatives are required so that only the experimental flutter derivatives of ($H_1^*$, $A_2^*$) are measured to calculate the onset flutter. Based on asymptotic expansions of the flutter derivatives, a further simplified formula was derived to predict the critical wind speed of the cross section, which is prone to the coupled-mode flutter at large reduced wind speeds. The numerical results produced by the proposed formulas have been compared with results obtained by complex eigenvalue analysis and available approximated methods show that they seem to give satisfactory results for a wide range of study cases. Thus, these formulas can be used in the assessment of bridge flutter performance at the preliminary design stage.