• Title/Summary/Keyword: Online mining

Search Result 398, Processing Time 0.028 seconds

Emerging Gender Issues in Korean Online Media: A Temporal Semantic Network Analysis Approach

  • Lee, Young-Joo;Park, Ji-Young
    • Journal of Contemporary Eastern Asia
    • /
    • v.18 no.2
    • /
    • pp.118-141
    • /
    • 2019
  • In South Korea, as awareness of gender equality increased since the 1990s, policies for gender equality and social awareness of equality have been established. Until recently, however, the gap between men and women in social and economic activities has not reached the globally desired level and led to social conflict throughout the country. In this study, we analyze the content of online news comments to understand the public perception of gender equality and the details of gender conflict and to grasp the emergence and diffusion process of emerging issues on gender equality. We collected text data from the online news that included the word 'gender equality' posted from January 2012 to June 2017 and also collected comments on each selected news item. Through text mining and the temporal semantic network analysis, we tracked the changes in discourse on gender equality and conflict. Results revealed that gender conflicts are increasing in the online media, and the focus of conflict is shifting from 'position and role inequality' to 'opportunity inequality'.

Chatting Pattern Based Game BOT Detection: Do They Talk Like Us?

  • Kang, Ah Reum;Kim, Huy Kang;Woo, Jiyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2866-2879
    • /
    • 2012
  • Among the various security threats in online games, the use of game bots is the most serious problem. Previous studies on game bot detection have proposed many methods to find out discriminable behaviors of bots from humans based on the fact that a bot's playing pattern is different from that of a human. In this paper, we look at the chatting data that reflects gamers' communication patterns and propose a communication pattern analysis framework for online game bot detection. In massive multi-user online role playing games (MMORPGs), game bots use chatting message in a different way from normal users. We derive four features; a network feature, a descriptive feature, a diversity feature and a text feature. To measure the diversity of communication patterns, we propose lightly summarized indices, which are computationally inexpensive and intuitive. For text features, we derive lexical, syntactic and semantic features from chatting contents using text mining techniques. To build the learning model for game bot detection, we test and compare three classification models: the random forest, logistic regression and lazy learning. We apply the proposed framework to AION operated by NCsoft, a leading online game company in Korea. As a result of our experiments, we found that the random forest outperforms the logistic regression and lazy learning. The model that employs the entire feature sets gives the highest performance with a precision value of 0.893 and a recall value of 0.965.

A Critical Analysis of Learning Technologies and Informal Learning in Online Social Networks Using Learning Analytics

  • Audu Kafwa Dodo;Ezekiel Uzor OKike
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.71-84
    • /
    • 2024
  • This paper presents a critical analysis of the current application of big data in higher education and how Learning Analytics (LA), and Educational Data Mining (EDM) are helping to shape learning in higher education institutions that have applied the concepts successfully. An extensive literature review of Learning Analytics, Educational Data Mining, Learning Management Systems, Informal Learning and Online Social Networks are presented to understand their usage and trends in higher education pedagogy taking advantage of 21st century educational technologies and platforms. The roles of and benefits of these technologies in teaching and learning are critically examined. Imperatively, this study provides vital information for education stakeholders on the significance of establishing a teaching and learning agenda that takes advantage of today's educational relevant technologies to promote teaching and learning while also acknowledging the difficulties of 21st-century learning. Aside from the roles and benefits of these technologies, the review highlights major challenges and research needs apparent in the use and application of these technologies. It appears that there is lack of research understanding in the challenges and utilization of data effectively for learning analytics, despite the massive educational data generated by high institutions. Also due to the growing importance of LA, there appears to be a serious lack of academic research that explore the application and impact of LA in high institution, especially in the context of informal online social network learning. In addition, high institution managers seem not to understand the emerging trends of LA which could be useful in the running of higher education. Though LA is viewed as a complex and expensive technology that will culturally change the future of high institution, the question that comes to mind is whether the use of LA in relation to informal learning in online social network is really what is expected? A study to analyze and evaluate the elements that influence high usage of OSN is also needed in the African context. It is high time African Universities paid attention to the application and use of these technologies to create a simplified learning approach occasioned by the use of these technologies.

A Design of Satisfaction Analysis System For Content Using Opinion Mining of Online Review Data (온라인 리뷰 데이터의 오피니언마이닝을 통한 콘텐츠 만족도 분석 시스템 설계)

  • Kim, MoonJi;Song, EunJeong;Kim, YoonHee
    • Journal of Internet Computing and Services
    • /
    • v.17 no.3
    • /
    • pp.107-113
    • /
    • 2016
  • Following the recent advancement in the use of social networks, a vast amount of different online reviews is created. These variable online reviews which provide feedback data of contents' are being used as sources of valuable information to both contents' users and providers. With the increasing importance of online reviews, studies on opinion mining which analyzes online reviews to extract opinions or evaluations, attitudes and emotions of the writer have been on the increase. However, previous sentiment analysis techniques of opinion-mining focus only on the classification of reviews into positive or negative classes but does not include detailed information analysis of the user's satisfaction or sentiment grounds. Also, previous designs of the sentiment analysis technique only applied to one content domain that is, either product or movie, and could not be applied to other contents from a different domain. This paper suggests a sentiment analysis technique that can analyze detailed satisfaction of online reviews and extract detailed information of the satisfaction level. The proposed technique can analyze not only one domain of contents but also a variety of contents that are not from the same domain. In addition, we design a system based on Hadoop to process vast amounts of data quickly and efficiently. Through our proposed system, both users and contents' providers will be able to receive feedback information more clearly and in detail. Consequently, potential users who will use the content can make effective decisions and contents' providers can quickly apply the users' responses when developing marketing strategy as opposed to the old methods of using surveys. Moreover, the system is expected to be used practically in various fields that require user comments.

Add-on selling strategies in an online open market

  • Shim, Beomsoo;Lee, Hanjun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.985-995
    • /
    • 2015
  • Add-on selling can provide new chances to increase sellers' profits and meet customers' needs. Although prior studies have advocated add-on selling for its business value, there is an argument that add-on selling can cause customer repulsion. Therefore, we need to understand customer purchasing pattern related to add-on selling in order to promote it and to mitigate the customer repulsion. To that end, we applied data mining techniques to the 24,925 transactions of data from an online open market in Korea. We then conducted feature selection to investigate the most influential factors that can explain the characteristics of add-on selling transactions using a classification model. We also identified association rules among add-on selling and promotions. Finally, based on the findings in our experiments, we proposed add-on selling strategies for the target online market.

Online Clustering Algorithms for Semantic-Rich Network Trajectories

  • Roh, Gook-Pil;Hwang, Seung-Won
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.346-353
    • /
    • 2011
  • With the advent of ubiquitous computing, a massive amount of trajectory data has been published and shared in many websites. This type of computing also provides motivation for online mining of trajectory data, to fit user-specific preferences or context (e.g., time of the day). While many trajectory clustering algorithms have been proposed, they have typically focused on offline mining and do not consider the restrictions of the underlying road network and selection conditions representing user contexts. In clear contrast, we study an efficient clustering algorithm for Boolean + Clustering queries using a pre-materialized and summarized data structure. Our experimental results demonstrate the efficiency and effectiveness of our proposed method using real-life trajectory data.

Inter-category Map: Building Cognition Network of General Customers through Big Data Mining

  • Song, Gil-Young;Cheon, Youngjoon;Lee, Kihwang;Park, Kyung Min;Rim, Hae-Chang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.583-600
    • /
    • 2014
  • Social media is considered a valuable platform for gathering and analyzing the collective and subconscious opinions of people in Internet and mobile environments, where they express, explicitly and implicitly, their daily preferences for brands and products. Extracting and tracking the various attitudes and concerns that people express through social media could enable us to categorize brands and decipher individuals' cognitive decision-making structure in their choice of brands. We investigate the cognitive network structure of consumers by building an inter-category map through the mining of big data. In so doing, we create an improved online recommendation model. Building on economic sociology theory, we suggest a framework for revealing collective preference by analyzing the patterns of brand names that users frequently mention in the online public sphere. We expect that our study will be useful for those conducting theoretical research on digital marketing strategies and doing practical work on branding strategies.

A Study on the Method for Extracting the Purpose-Specific Customized Information from Online Product Reviews based on Text Mining (텍스트 마이닝 기반의 온라인 상품 리뷰 추출을 통한 목적별 맞춤화 정보 도출 방법론 연구)

  • Kim, Joo Young;Kim, Dong soo
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.2
    • /
    • pp.151-161
    • /
    • 2016
  • In the era of the Web 2.0, characterized by the openness, sharing and participation, it is easy for internet users to produce and share the data. The amount of the unstructured data which occupies most of the digital world's data has increased exponentially. One of the kinds of the unstructured data called personal online product reviews is necessary for both the company that produces those products and the potential customers who are interested in those products. In order to extract useful information from lots of scattered review data, the process of collecting data, storing, preprocessing, analyzing, and drawing a conclusion is needed. Therefore we introduce the text-mining methodology for applying the natural language process technology to the text format data like product review in order to carry out extracting structured data by using R programming. Also, we introduce the data-mining to derive the purpose-specific customized information from the structured review information drawn by the text-mining.

Terms Based Sentiment Classification for Online Review Using Support Vector Machine (Support Vector Machine을 이용한 온라인 리뷰의 용어기반 감성분류모형)

  • Lee, Taewon;Hong, Taeho
    • Information Systems Review
    • /
    • v.17 no.1
    • /
    • pp.49-64
    • /
    • 2015
  • Customer reviews which include subjective opinions for the product or service in online store have been generated rapidly and their influence on customers has become immense due to the widespread usage of SNS. In addition, a number of studies have focused on opinion mining to analyze the positive and negative opinions and get a better solution for customer support and sales. It is very important to select the key terms which reflected the customers' sentiment on the reviews for opinion mining. We proposed a document-level terms-based sentiment classification model by select in the optimal terms with part of speech tag. SVMs (Support vector machines) are utilized to build a predictor for opinion mining and we used the combination of POS tag and four terms extraction methods for the feature selection of SVM. To validate the proposed opinion mining model, we applied it to the customer reviews on Amazon. We eliminated the unmeaning terms known as the stopwords and extracted the useful terms by using part of speech tagging approach after crawling 80,000 reviews. The extracted terms gained from document frequency, TF-IDF, information gain, chi-squared statistic were ranked and 20 ranked terms were used to the feature of SVM model. Our experimental results show that the performance of SVM model with four POS tags is superior to the benchmarked model, which are built by extracting only adjective terms. In addition, the SVM model based on Chi-squared statistic for opinion mining shows the most superior performance among SVM models with 4 different kinds of terms extraction method. Our proposed opinion mining model is expected to improve customer service and gain competitive advantage in online store.

FEROM: Feature Extraction and Refinement for Opinion Mining

  • Jeong, Ha-Na;Shin, Dong-Wook;Choi, Joong-Min
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.720-730
    • /
    • 2011
  • Opinion mining involves the analysis of customer opinions using product reviews and provides meaningful information including the polarity of the opinions. In opinion mining, feature extraction is important since the customers do not normally express their product opinions holistically but separately according to its individual features. However, previous research on feature-based opinion mining has not had good results due to drawbacks, such as selecting a feature considering only syntactical grammar information or treating features with similar meanings as different. To solve these problems, this paper proposes an enhanced feature extraction and refinement method called FEROM that effectively extracts correct features from review data by exploiting both grammatical properties and semantic characteristics of feature words and refines the features by recognizing and merging similar ones. A series of experiments performed on actual online review data demonstrated that FEROM is highly effective at extracting and refining features for analyzing customer review data and eventually contributes to accurate and functional opinion mining.