• Title/Summary/Keyword: Online mining

Search Result 398, Processing Time 0.024 seconds

A Morphological Analysis Method of Predicting Place-Event Performance by Online News Titles (온라인 뉴스 제목 분석을 통한 특정 장소 이벤트 성과 예측을 위한 형태소 분석 방법)

  • Choi, Sukjae;Lee, Jaewoong;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.1
    • /
    • pp.15-32
    • /
    • 2016
  • Online news on the Internet, as published open data, contain facts or opinions about a specific affair and hence influences considerably on the decisions of the general publics who are interested in a particular issue. Therefore, we can predict the people's choices related with the issue by analyzing a large number of related internet news. This study aims to propose a text analysis methodto predict the outcomes of events that take place in a specific place. We used topics of the news articles because the topics contains more essential text than the news articles. Moreover, when it comes to mobile environment, people tend to rely more on the news topics before clicking into the news articles. We collected the titles of news articles and divided them into the learning and evaluation data set. Morphemes are extracted and their polarity values are identified with the learning data. Then we analyzed the sensitivity of the entire articles. As a result, the prediction success rate was 70.6% and it showed a clear difference with other analytical methods to compare. Derived prediction information will be helpful in determining the expected demand of goods when preparing the event.

A Study upon Online Measurement techniques of Corporate Reputation (기업의 디지털 평판 측정 기법 연구)

  • Kim, Seung-Hee;Kim, Woo-Je;Lee, Kwang-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.139-152
    • /
    • 2013
  • Although a series of studies shows the fact that a company's reputation could affect its sales rate and stock price, due to the increased use of SNS, the research related to the online measurement method for the corporate reputation has been relatively insufficient. This study explores a design for a method to quantify the corporate reputation value by reconstructing the discussions in literature review. Concretely, this study divides the corporate reputation value into the corporate identity information and the corporate awareness information, which includes the following five sub-categories: (1) the quality of product and service; (2) the employment environment; (3) the corporate vision; (4) the social responsibility; and (5) the business achievement. Additionally, for the corporate identity assessment, this study considers the following six factors: (1) Agreeableness (Goodness), (2)Capability (Ability), (3)Enterprise (Rise), (4)Chic (Class), (5) Ruthlessness (Authority), and (6)Informality. Based on these categories and factors, this study develops a technique quantifying the corporate reputation value by selecting 'word items' for the reputation search, and after conducting a frequency analysis in a survey. Also, to verify the result, this study exemplifies the reputation of three SI companies in Korea which could be utilized by using the commercialized reputation service. This study firstly attempts the corporate reputation measurement by classifying the identity and the awareness (corporate image and communication) upon a company in detail and enables its real applicabilities by proposing a formula to measure the reputation scores which can be utilized by verified word items from a frequency analysis.

Online Document Mining Approach to Predicting Crowdfunding Success (온라인 문서 마이닝 접근법을 활용한 크라우드펀딩의 성공여부 예측 방법)

  • Nam, Suhyeon;Jin, Yoonsun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.45-66
    • /
    • 2018
  • Crowdfunding has become more popular than angel funding for fundraising by venture companies. Identification of success factors may be useful for fundraisers and investors to make decisions related to crowdfunding projects and predict a priori whether they will be successful or not. Recent studies have suggested several numeric factors, such as project goals and the number of associated SNS, studying how these affect the success of crowdfunding campaigns. However, prediction of the success of crowdfunding campaigns via non-numeric and unstructured data is not yet possible, especially through analysis of structural characteristics of documents introducing projects in need of funding. Analysis of these documents is promising because they are open and inexpensive to obtain. We propose a novel method to predict the success of a crowdfunding project based on the introductory text. To test the performance of the proposed method, in our study, texts related to 1,980 actual crowdfunding projects were collected and empirically analyzed. From the text data set, the following details about the projects were collected: category, number of replies, funding goal, fundraising method, reward, number of SNS followers, number of images and videos, and miscellaneous numeric data. These factors were identified as significant input features to be used in classification algorithms. The results suggest that the proposed method outperforms other recently proposed, non-text-based methods in terms of accuracy, F-score, and elapsed time.

A Comparative Analysis of OTT Service Reviews Before and After the Onset of the Pandemic Using Text Mining Technique: Focusing on the Emotion-Focused Coping and Nostalgia (텍스트 마이닝을 활용한 코로나 19 전후 온라인 동영상 서비스(OTT) 리뷰 비교분석 연구 - 정서 중심 대처와 노스탤지어를 중심으로)

  • Ko, Minjeong;Lee, Sangwon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.375-388
    • /
    • 2021
  • This study aims to contribute to the understanding of consumer behavior during the COVID-19 by comparing blog reviews of an over-the-top (OTT) online video service from before and during the pandemic. We anticipate that the COVID-19 outbreak prompts the use of the OTT service as part of an emotion-focused coping strategy derived from the loss of personal control and the subsequent avoidance motivation. We also posit that a strong yearning for life before COVID-19 will increase interest in the content that fulfills a need for nostalgia. Our analysis of Netflix reviews provides empirical evidence of the effects of an emotion-focused coping strategy and nostalgia on OTT service usage. First, the titles of the reviews posted during COVID-19 indicate that consumers were less likely to mention OTT services other than Netflix, more interested in domestic content, and used OTT services as an avoidance-denial strategy. Second, the blog content demonstrates that while pre-COVID reviews tend to focus on the practical benefits of OTT services, those posted during the pandemic focus on mood, emotions, and dialogue. In addition, interest in comedy and romance genres increased during COVID-19. Third, we identified a greater preference for realistic or everyday content that depicted the pre-pandemic era. This is the first empirical study to investigate the effects of COVID-19 on video streaming usage in Korea. In addition, this research contributes to the field of marketing by expanding our understanding of online video service users during COVID-19 and identifies practical implications for OTT services in the midst of a pandemic.

The Effect of Text Consistency between the Review Title and Content on Review Helpfulness (온라인 리뷰의 제목과 내용의 일치성이 리뷰 유용성에 미치는 영향)

  • Li, Qinglong;Kim, Jaekyeong
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.193-212
    • /
    • 2022
  • Many studies have proposed several factors that affect review helpfulness. Previous studies have investigated the effect of quantitative factors (e.g., star ratings) and affective factors (e.g., sentiment scores) on review helpfulness. Online reviews contain titles and contents, but existing studies focus on the review content. However, there is a limitation to investigating the factors that affect review helpfulness based on the review content without considering the review title. However, previous studies independently investigated the effect of review content and title on review helpfulness. However, it may ignore the potential impact of similarity between review titles and content on review helpfulness. This study used text consistency between review titles and content affect review helpfulness based on the mere exposure effect theory. We also considered the role of information clearness, review length, and source reliability. The results show that text consistency between the review title and the content negatively affects the review helpfulness. Furthermore, we found that information clearness and source reliability weaken the negative effects of text consistency on review helpfulness.

The Prediction of the Helpfulness of Online Review Based on Review Content Using an Explainable Graph Neural Network (설명가능한 그래프 신경망을 활용한 리뷰 콘텐츠 기반의 유용성 예측모형)

  • Eunmi Kim;Yao Ziyan;Taeho Hong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.309-323
    • /
    • 2023
  • As the role of online reviews has become increasingly crucial, numerous studies have been conducted to utilize helpful reviews. Helpful reviews, perceived by customers, have been verified in various research studies to be influenced by factors such as ratings, review length, review content, and so on. The determination of a review's helpfulness is generally based on the number of 'helpful' votes from consumers, with more 'helpful' votes considered to have a more significant impact on consumers' purchasing decisions. However, recently written reviews that have not been exposed to many customers may have relatively few 'helpful' votes and may lack 'helpful' votes altogether due to a lack of participation. Therefore, rather than relying on the number of 'helpful' votes to assess the helpfulness of reviews, we aim to classify them based on review content. In addition, the text of the review emerges as the most influential factor in review helpfulness. This study employs text mining techniques, including topic modeling and sentiment analysis, to analyze the diverse impacts of content and emotions embedded in the review text. In this study, we propose a review helpfulness prediction model based on review content, utilizing movie reviews from IMDb, a global movie information site. We construct a review helpfulness prediction model by using an explainable Graph Neural Network (GNN), while addressing the interpretability limitations of the machine learning model. The explainable graph neural network is expected to provide more reliable information about helpful or non-helpful reviews as it can identify connections between reviews.

Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being (주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법)

  • Choi, Sukjae;Song, Yeongeun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.83-105
    • /
    • 2016
  • Measuring an individual's subjective wellbeing in an accurate, unobtrusive, and cost-effective manner is a core success factor of the wellbeing support system, which is a type of medical IT service. However, measurements with a self-report questionnaire and wearable sensors are cost-intensive and obtrusive when the wellbeing support system should be running in real-time, despite being very accurate. Recently, reasoning the state of subjective wellbeing with conventional sentiment analysis and unstructured data has been proposed as an alternative to resolve the drawbacks of the self-report questionnaire and wearable sensors. However, this approach does not consider contextual polarity, which results in lower measurement accuracy. Moreover, there is no sentimental word net or ontology for the subjective wellbeing area. Hence, this paper proposes a method to extract keywords and their contextual polarity representing the subjective wellbeing state from the unstructured text in online websites in order to improve the reasoning accuracy of the sentiment analysis. The proposed method is as follows. First, a set of general sentimental words is proposed. SentiWordNet was adopted; this is the most widely used dictionary and contains about 100,000 words such as nouns, verbs, adjectives, and adverbs with polarities from -1.0 (extremely negative) to 1.0 (extremely positive). Second, corpora on subjective wellbeing (SWB corpora) were obtained by crawling online text. A survey was conducted to prepare a learning dataset that includes an individual's opinion and the level of self-report wellness, such as stress and depression. The participants were asked to respond with their feelings about online news on two topics. Next, three data sources were extracted from the SWB corpora: demographic information, psychographic information, and the structural characteristics of the text (e.g., the number of words used in the text, simple statistics on the special characters used). These were considered to adjust the level of a specific SWB. Finally, a set of reasoning rules was generated for each wellbeing factor to estimate the SWB of an individual based on the text written by the individual. The experimental results suggested that using contextual polarity for each SWB factor (e.g., stress, depression) significantly improved the estimation accuracy compared to conventional sentiment analysis methods incorporating SentiWordNet. Even though literature is available on Korean sentiment analysis, such studies only used only a limited set of sentimental words. Due to the small number of words, many sentences are overlooked and ignored when estimating the level of sentiment. However, the proposed method can identify multiple sentiment-neutral words as sentiment words in the context of a specific SWB factor. The results also suggest that a specific type of senti-word dictionary containing contextual polarity needs to be constructed along with a dictionary based on common sense such as SenticNet. These efforts will enrich and enlarge the application area of sentic computing. The study is helpful to practitioners and managers of wellness services in that a couple of characteristics of unstructured text have been identified for improving SWB. Consistent with the literature, the results showed that the gender and age affect the SWB state when the individual is exposed to an identical queue from the online text. In addition, the length of the textual response and usage pattern of special characters were found to indicate the individual's SWB. These imply that better SWB measurement should involve collecting the textual structure and the individual's demographic conditions. In the future, the proposed method should be improved by automated identification of the contextual polarity in order to enlarge the vocabulary in a cost-effective manner.

Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news (온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측)

  • Jeong, Ji Seon;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.37-51
    • /
    • 2015
  • Due to the development of internet technology and the rapid increase of internet data, various studies are actively conducted on how to use and analyze internet data for various purposes. In particular, in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of the current application of structured data. Especially, there are various studies on sentimental analysis to score opinions based on the distribution of polarity such as positivity or negativity of vocabularies or sentences of the texts in documents. As a part of such studies, this study tries to predict ups and downs of stock prices of companies by performing sentimental analysis on news contexts of the particular companies in the Internet. A variety of news on companies is produced online by different economic agents, and it is diffused quickly and accessed easily in the Internet. So, based on inefficient market hypothesis, we can expect that news information of an individual company can be used to predict the fluctuations of stock prices of the company if we apply proper data analysis techniques. However, as the areas of corporate management activity are different, an analysis considering characteristics of each company is required in the analysis of text data based on machine-learning. In addition, since the news including positive or negative information on certain companies have various impacts on other companies or industry fields, an analysis for the prediction of the stock price of each company is necessary. Therefore, this study attempted to predict changes in the stock prices of the individual companies that applied a sentimental analysis of the online news data. Accordingly, this study chose top company in KOSPI 200 as the subjects of the analysis, and collected and analyzed online news data by each company produced for two years on a representative domestic search portal service, Naver. In addition, considering the differences in the meanings of vocabularies for each of the certain economic subjects, it aims to improve performance by building up a lexicon for each individual company and applying that to an analysis. As a result of the analysis, the accuracy of the prediction by each company are different, and the prediction accurate rate turned out to be 56% on average. Comparing the accuracy of the prediction of stock prices on industry sectors, 'energy/chemical', 'consumer goods for living' and 'consumer discretionary' showed a relatively higher accuracy of the prediction of stock prices than other industries, while it was found that the sectors such as 'information technology' and 'shipbuilding/transportation' industry had lower accuracy of prediction. The number of the representative companies in each industry collected was five each, so it is somewhat difficult to generalize, but it could be confirmed that there was a difference in the accuracy of the prediction of stock prices depending on industry sectors. In addition, at the individual company level, the companies such as 'Kangwon Land', 'KT & G' and 'SK Innovation' showed a relatively higher prediction accuracy as compared to other companies, while it showed that the companies such as 'Young Poong', 'LG', 'Samsung Life Insurance', and 'Doosan' had a low prediction accuracy of less than 50%. In this paper, we performed an analysis of the share price performance relative to the prediction of individual companies through the vocabulary of pre-built company to take advantage of the online news information. In this paper, we aim to improve performance of the stock prices prediction, applying online news information, through the stock price prediction of individual companies. Based on this, in the future, it will be possible to find ways to increase the stock price prediction accuracy by complementing the problem of unnecessary words that are added to the sentiment dictionary.

A Korean Product Review Analysis System Using a Semi-Automatically Constructed Semantic Dictionary (반자동으로 구축된 의미 사전을 이용한 한국어 상품평 분석 시스템)

  • Myung, Jae-Seok;Lee, Dong-Joo;Lee, Sang-Goo
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.6
    • /
    • pp.392-403
    • /
    • 2008
  • User reviews are valuable information that can be used for various purposes. In particular, the product reviews on online shopping sites are important information which can directly affect the purchasing decision of the customers. In this paper, we present our design and implementation of a system for summarizing the customer's opinion and the features of each product by analyzing reviews on a commercial shopping site. During the analysis process, several natural language processing(NLP) techniques and the semantic dictionary were used. The semantic dictionary contains vocabularies that are used to express product features and customer's opinions. And it was constructed in semi-automatic way with the help of the tool we implemented. Furthermore, we discuss how to handle the vocabularies that have different meanings according to the context. We analyzed 1796 reviews about 20 products of 2 categories collected from an actual shopping site and implemented a novel ranking system. We obtained 88.94% for precision and 47.92% for recall on extracting opinion expression, which means our system can be applicable for real use.

How does the General Public Understand Science and Technology Issues?: A Case on the Nuclear Power Issue Using Topic Modeling Approach (과학기술이슈에 대한 일반인의 인식분석: 토픽모델링을 활용한 원자력발전 사례)

  • Choi, Hyundo;Ahn, Jongwuk
    • Journal of Technology Innovation
    • /
    • v.23 no.4
    • /
    • pp.151-175
    • /
    • 2015
  • The general public is a key stakeholder in the science and technology domain. However, traditional approaches require substantial efforts and resources to analyze how does the general public understand science and technology issues. We applied the topic modeling, a form of text clustering, to the texts about the nuclear power which were posted on an online space in order to explore the general public's thoughts on the issue. This study investigates the extent to which macro-level events influence understandings of the general public on the science and technology issues and weather these changes in understandings are sustained over time. It examines the possibility of applying topic modeling in narrowing a perception gap between the general public and the experts through a near-real-time monitoring of the public interests and perceptions about the science and technology issues.