• Title/Summary/Keyword: Online mining

Search Result 398, Processing Time 0.025 seconds

Mining Proteins Associated with Oral Squamous Cell Carcinoma in Complex Networks

  • Liu, Ying;Liu, Chuan-Xia;Wu, Zhong-Ting;Ge, Lin;Zhou, Hong-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4621-4625
    • /
    • 2013
  • The purpose of this study was to construct a protein-protein interaction (PPI) network related to oral squamous cell carcinoma (OSCC). Each protein was ranked and those most associated with OSCC were mined within the network. First, OSCC-related genes were retrieved from the Online Mendelian Inheritance in Man (OMIM) database. Then they were mapped to their protein identifiers and a seed set of proteins was built. The seed proteins were expanded using the nearest neighbor expansion method to construct a PPI network through the Online Predicated Human Interaction Database (OPHID). The network was verified to be statistically significant, the score of each protein was evaluated by algorithm, then the OSCC-related proteins were ranked. 38 OSCC related seed proteins were expanded to 750 protein pairs. A protein-protein interaction nerwork was then constructed and the 30 top-ranked proteins listed. The four highest-scoring seed proteins were SMAD4, CTNNB1, HRAS, NOTCH1, and four non-seed proteins P53, EP300, SMAD3, SRC were mined using the nearest neighbor expansion method. The methods shown here may facilitate the discovery of important OSCC proteins and guide medical researchers in further pertinent studies.

Evaluation of Collaborative Filtering Methods for Developing Online Music Contents Recommendation System (온라인 음악 콘텐츠 추천 시스템 구현을 위한 협업 필터링 기법들의 비교 평가)

  • Yoo, Youngseok;Kim, Jiyeon;Sohn, Bangyong;Jung, Jongjin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1083-1091
    • /
    • 2017
  • As big data technologies have been developed and massive data have exploded from users through various channels, CEO of global IT enterprise mentioned core importance of data in next generation business. Therefore various machine learning technologies have been necessary to apply data driven services but especially recommendation has been core technique in viewpoint of directly providing summarized information or exact choice of items to users in information flooding environment. Recently evolved recommendation techniques have been proposed by many researchers and most of service companies with big data tried to apply refined recommendation method on their online business. For example, Amazon used item to item collaborative filtering method on its sales distribution platform. In this paper, we develop a commercial web service for suggesting music contents and implement three representative collaborative filtering methods on the service. We also produce recommendation lists with three methods based on real world sample data and evaluate the usefulness of them by comparison among the produced result. This study is meaningful in terms of suggesting the right direction and practicality when companies and developers want to develop web services by applying big data based recommendation techniques in practical environment.

A Study on the Online Perception of Chabak Using Big Data Analysis (빅데이터 분석을 통한 차박의 온라인 인식에 대한 연구)

  • Kim, Sae-Hoon;Lee, Hwan-Soo
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.2
    • /
    • pp.61-81
    • /
    • 2021
  • In the era of untact, the "Chabak" using cars as accommodation spaces is attracting attention as a new form of travel. Due to the advantages, including low costs, convenience, and safety, as well as the characteristics of the vehicle enabling independent travel, the demand for Chabak is continuously increasing. Despite the rapid growth of the market and related industries, little academic has investigated this trend. To establish itself as a new type of travel culture and to sustain the growth of related industries, it is essential to understand the public perception of Chabak. Therefore, based on the marketing mix theory and big data analysis, this study analyzes the public perception of Chabak. The results showed that Chabak has established itself as a consumer-led travel culture, contributing to the aftermarket growth of the automobile industry. Additionally, consumers were found to be increasingly inclined to enjoy travel economically and wisely, and actively share information through social media. This initial study on the new travel trend of Chabak is significant in that it employs big data analysis on a theoretical basis.

A Study on Search Query Topics and Types using Topic Modeling and Principal Components Analysis (토픽모델링 및 주성분 분석 기반 검색 질의 유형 분류 연구)

  • Kang, Hyun-Ah;Lim, Heui-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.6
    • /
    • pp.223-234
    • /
    • 2021
  • Recent advances in the 4th Industrial Revolution have accelerated the change of the shopping behavior from offline to online. Search queries show customers' information needs most intensively in online shopping. However, there are not many search query research in the field of search, and most of the prior research in the field of search query research has been studied on a limited topic and data-based basis based on researchers' qualitative judgment. To this end, this study defines the type of search query with data-based quantitative methodology by applying machine learning to search research query field to define the 15 topics of search query by conducting topic modeling based on search query and clicked document information. Furthermore, we present a new classification system of new search query types representing searching behavior characteristics by extracting key variables through principal component analysis and analyzing. The results of this study are expected to contribute to the establishment of effective search services and the development of search systems.

Design and analysis of monitoring system for illegal overseas direct purchase based on C2C (C2C에 기반으로 해외직구 불법거래에 관한 모니터링 시스템 설계 및 분석)

  • Shin, Yong-Hun;Kim, Jeong-Ho
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.609-615
    • /
    • 2022
  • In this paper, we propose a monitoring system for illegal overseas direct purchase based on C2C transaction between individuals. The Customs Act stipulates that direct purchases from overseas are exempted from taxation only if they are less than a certain amount (US$150, but US$200 in the US) or are recognized as self-used goods. The act of reselling overseas direct purchase items purchased with exemption from taxation online, etc., is a crime of smuggling without a report. Nevertheless, the number of re-sells on online second-hand websites is increasing, and it is becoming a controversial social issue of continuous violation of the Customs Act. Therefore, this study collects unspecified transaction details related to overseas direct purchase, refines the data in a big data method, and designs it as a monitoring system through natural language processing, etc. analyzed. It will be possible to use it to crack down on illegal transactions of overseas direct purchase goods.

A Study on the Evaluation Differences of Korean and Chinese Users in Smart Home App Services through Text Mining based on the Two-Factor Theory: Focus on Trustness (이요인 이론 기반 텍스트 마이닝을 통한 한·중 스마트홈 앱 서비스 사용자 평가 차이에 대한 연구: 신뢰성 중심)

  • Yuning Zhao;Gyoo Gun Lim
    • Journal of Information Technology Services
    • /
    • v.22 no.3
    • /
    • pp.141-165
    • /
    • 2023
  • With the advent of the fourth industrial revolution, technologies such as the Internet of Things, artificial intelligence and cloud computing are developing rapidly, and smart homes enabled by these technologies are rapidly gaining popularity. To gain a competitive advantage in the global market, companies must understand the differences in consumer needs in different countries and cultures and develop corresponding business strategies. Therefore, this study conducts a comparative analysis of consumer reviews of smart homes in South Korea and China. This study collected online reviews of SmartThings, ThinQ, Msmarthom, and MiHome, the four most commonly used smart home apps in Korea and China. The collected review data is divided into satisfied reviews and dissatisfied reviews according to the ratings, and topics are extracted for each review dataset using LDA topic modeling. Next, the extracted topics are classified according to five evaluation factors of Perceived Usefulness, Reachability, Interoperability,Trustness, and Product Brand proposed by previous studies. Then, by comparing the importance of each evaluation factor in the two datasets of satisfaction and dissatisfaction, we find out the factors that affect consumer satisfaction and dissatisfaction, and compare the differences between users in Korea and China. We found Trustness and Reachability are very important factors. Finally, through language network analysis, the relationship between dissatisfied factors is analyzed from a more microscopic level, and improvement plans are proposed to the companies according to the analysis results.

Climate change messages in the fashion industry discussed at COP28

  • Yeong-Hyeon Choi;Sangyung Lee
    • The Research Journal of the Costume Culture
    • /
    • v.32 no.4
    • /
    • pp.517-546
    • /
    • 2024
  • The aim of this study is to investigate the fashion industry's response to climate change and how these discussions unfolded at the 28th Conference of the Parties (COP28) to the United Nations Framework Convention on Climate Change (UNFCCC). Climate change response projects by B Corp-certified fashion companies are examined, focusing on stakeholder efforts and reviewing online media reports. Text data were collected from web documents, interviews, and op-eds relating to COP28 from December 2018 to April 2024 and analyzed using text mining and semantic network analysis to identify critical keywords and contexts. The analysis revealed that the fashion industry is fulfilling its environmental responsibilities through various strategies, prompting changes in consumer behavior by advocating sustainable consumption, including carbon removal, energy transition, and recycling promotion. Stakeholders in online media and those present at COP28 discussed issues relating to climate change in the fashion industry, focusing on environmental protection, energy, greenhouse gas emissions, sustainable material usage, and social responsibility. Key issues at COP28 included policy and regulation, climate change response, energy transition, carbon emissions management, and environmental, social, and governance (ESG) standards. Additionally, by examining the main collections exhibited at the fashion show during COP28, the study analyzed how messages about climate change were conveyed. Fashion companies communicated the industry's response through exhibitions and fashion shows, suggesting a move toward balancing environmental protection and economic growth through the development of sustainable materials, the expansion of recycling and reuse practices, and the modern reinterpretation of cultural heritage.

Research Trends in e-commerce Using Topic Modeling: Focusing on SCOPUS Database (토픽 모델링을 활용한 e-commerce 연구 동향: SCOPUS DB 데이터를 중심으로)

  • Tae-Gu Kang
    • Journal of Industrial Convergence
    • /
    • v.22 no.10
    • /
    • pp.1-9
    • /
    • 2024
  • E-commerce has emerged as a key economic driver in the digital age, and the importance of the e-commerce market has been highlighted, leading to rapid expansion in related research areas. This paper analyzes the research trends on e-commerce from 1996, when e-commerce emerged and research began, to the present day. To this end, we used R and LDA topic modeling techniques and conducted a validity test on the number of topics and an analysis of the predictive value of the topic model centered on the core keyword "e-commerce" using the SCOPUS, a foreign academic database. The analysis of topics showed that ecommerce, model, study, data, and online were among the important topics. Logistics was also found to be important. In the rapidly changing and complex e-commerce market environment, it is important to respond to the diversification of business models and the establishment of a stable revenue structure to survive. As the continuous growth of the e-commerce market is predicted, the results of this study can be used as basic data for entering the e-commerce market and expanding business through countermeasures and strategies.

Measuring the Economic Impact of Item Descriptions on Sales Performance (온라인 상품 판매 성과에 영향을 미치는 상품 소개글 효과 측정 기법)

  • Lee, Dongwon;Park, Sung-Hyuk;Moon, Songchun
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.1-17
    • /
    • 2012
  • Personalized smart devices such as smartphones and smart pads are widely used. Unlike traditional feature phones, theses smart devices allow users to choose a variety of functions, which support not only daily experiences but also business operations. Actually, there exist a huge number of applications accessible by smart device users in online and mobile application markets. Users can choose apps that fit their own tastes and needs, which is impossible for conventional phone users. With the increase in app demand, the tastes and needs of app users are becoming more diverse. To meet these requirements, numerous apps with diverse functions are being released on the market, which leads to fierce competition. Unlike offline markets, online markets have a limitation in that purchasing decisions should be made without experiencing the items. Therefore, online customers rely more on item-related information that can be seen on the item page in which online markets commonly provide details about each item. Customers can feel confident about the quality of an item through the online information and decide whether to purchase it. The same is true of online app markets. To win the sales competition against other apps that perform similar functions, app developers need to focus on writing app descriptions to attract the attention of customers. If we can measure the effect of app descriptions on sales without regard to the app's price and quality, app descriptions that facilitate the sale of apps can be identified. This study intends to provide such a quantitative result for app developers who want to promote the sales of their apps. For this purpose, we collected app details including the descriptions written in Korean from one of the largest app markets in Korea, and then extracted keywords from the descriptions. Next, the impact of the keywords on sales performance was measured through our econometric model. Through this analysis, we were able to analyze the impact of each keyword itself, apart from that of the design or quality. The keywords, comprised of the attribute and evaluation of each app, are extracted by a morpheme analyzer. Our model with the keywords as its input variables was established to analyze their impact on sales performance. A regression analysis was conducted for each category in which apps are included. This analysis was required because we found the keywords, which are emphasized in app descriptions, different category-by-category. The analysis conducted not only for free apps but also for paid apps showed which keywords have more impact on sales performance for each type of app. In the analysis of paid apps in the education category, keywords such as 'search+easy' and 'words+abundant' showed higher effectiveness. In the same category, free apps whose keywords emphasize the quality of apps showed higher sales performance. One interesting fact is that keywords describing not only the app but also the need for the app have asignificant impact. Language learning apps, regardless of whether they are sold free or paid, showed higher sales performance by including the keywords 'foreign language study+important'. This result shows that motivation for the purchase affected sales. While item reviews are widely researched in online markets, item descriptions are not very actively studied. In the case of the mobile app markets, newly introduced apps may not have many item reviews because of the low quantity sold. In such cases, item descriptions can be regarded more important when customers make a decision about purchasing items. This study is the first trial to quantitatively analyze the relationship between an item description and its impact on sales performance. The results show that our research framework successfully provides a list of the most effective sales key terms with the estimates of their effectiveness. Although this study is performed for a specified type of item (i.e., mobile apps), our model can be applied to almost all of the items traded in online markets.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.