• Title/Summary/Keyword: Online mining

Search Result 398, Processing Time 0.027 seconds

Non face-to-face News Articles Keyword Using Topic Modeling (토픽모델링을 이용한 비대면 신문 기사 키워드 분석)

  • Shin, Ari;Hwangbo, Jun Kwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1751-1754
    • /
    • 2022
  • The news articles collected with keyword "non face-to-face" were analyzed through topic modeling applied with LDA algorithm. In this study, collected articles were divided into two periods, period 1(the beginning of COVID-19 spread) and period 2(the end of COVID-19 spread), according to issued date of the articles. The articles of period 1 showed support for non-face-to-face treatment, smart library, the beginning of the online financial era, non-face-to-face entrance exam and employment, stock investment for main topic words. And the articles of period 2 showed conversion to non face-to-face classes, increasing unmanned stores, online finance, education industry, home treatment for main topic words. Also, further issues were discussed through visualization of topic words. These results provide evidence that education and unmanned business in non-face-to-face industries are growing.

Investigating the Impact of Discrete Emotions Using Transfer Learning Models for Emotion Analysis: A Case Study of TripAdvisor Reviews

  • Dahee Lee;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • v.34 no.2
    • /
    • pp.372-399
    • /
    • 2024
  • Online reviews play a significant role in consumer purchase decisions on e-commerce platforms. To address information overload in the context of online reviews, factors that drive review helpfulness have received considerable attention from scholars and practitioners. The purpose of this study is to explore the differential effects of discrete emotions (anger, disgust, fear, joy, sadness, and surprise) on perceived review helpfulness, drawing on cognitive appraisal theory of emotion and expectation-confirmation theory. Emotions embedded in 56,157 hotel reviews collected from TripAdvisor.com were extracted based on a transfer learning model to measure emotion variables as an alternative to dictionary-based methods adopted in previous research. We found that anger and fear have positive impacts on review helpfulness, while disgust and joy exert negative impacts. Moreover, hotel star-classification significantly moderates the relationships between several emotions (disgust, fear, and joy) and perceived review helpfulness. Our results extend the understanding of review assessment and have managerial implications for hotel managers and e-commerce vendors.

A Personalized Approach for Recommending Useful Product Reviews Based on Information Gain

  • Choeh, Joon Yeon;Lee, Hong Joo;Park, Sung Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1702-1716
    • /
    • 2015
  • Customer product reviews have become great influencers of purchase decision making. To assist potential customers, online stores provide various ways to sort customer reviews. Different methods have been developed to identify and recommend useful reviews to customers, primarily using feedback provided by customers about the helpfulness of reviews. Most of the methods consider the preferences of all users to determine whether reviews are helpful, and all users receive the same recommendations.

A Study on the Preemptive Measure for Fake News Eradication Using Data Mining Algorithms : Focused on the M Online Community Postings (데이터 마이닝을 활용한 가짜뉴스의 선제적 대응을 위한 연구 : M 온라인 커뮤니티 게시물을 중심으로)

  • Lim, Munyeong;Park, Sungbum
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.219-234
    • /
    • 2019
  • Fake news threaten democratic elections and causes social conflicts, resulting in major damage. However, the concept of fake news is hard to define, as there is a saying, "News is not fake, fake is not news." Fake news, however, has irreversible characteristics that can not be recovered or reversed completely through post-punishment of economic and political benefits. It is also rapidly spreading in the early days. Therefore, it is very important to preemptively detect these types of articles and prevent their blind proliferation. The existing countermeasures are focused on reporting fake news, raising the level of punishment, and the media & academia to determine the authenticity of the news. Researchers are also trying to determine the authenticity by analyzing its contents. Apart from the contents of fake news, determining the behavioral characteristics of the promoters and its qualities can help identify the possibility of having fake news in advance. The online community has a fake news interception and response tradition through its long-standing community-based activities. As a result, I attempted to model the fake news by analyzing the affirmation-denial analysis and posting behavior by securing the web board crawl of the 'M community' bulletin board during the 2017 Korean presidential election period. Random forest algorithm deemed significant. The results of this research will help counteract fake news and focus on preemptive blocking through behavioral analysis rather than post-judgment after semantic analysis.

Analysis of the Current Status of Edutech in Korean Language Education

  • JinHee KIM;HoSung WOO
    • Fourth Industrial Review
    • /
    • v.3 no.2
    • /
    • pp.11-17
    • /
    • 2023
  • Purpose - Recently, in the field of language education, interest in edutech has increased due to difficulties in classroom teaching due to COVID-19. Accordingly, we would like to analyze research topics related to e-learning before and after COVID-19 and examine the implications for the future Korean language education field. Research design, data, and methodology - This study organized a list of papers to be analyzed by searching for e-learning terms applicable to Korean language education in RISS. The collected data was electronically documented, keywords were extracted using text mining techniques, and word frequencies were checked, and then viewed through cloud visualization. Result - It was confirmed that research on e-learning in the field of Korean language education has increased rapidly in 2021 and 2022. In particular, extensive research on online learning methods has been actively conducted due to the difficulties of face-to-face learning in the COVID-19 era. There have been many studies on teaching and learning methods, such as flipped learning, hybrid learning, blended learning, mobile learning, and smart learning. Conclusion - Since the research so far has mainly focused on online class management methods. Therefore, future research suggests that efforts should be made to develop educational contents and teaching methods using specific ICT technologies. These efforts will contribute to advancing smart education that future education aims for.

A Study on the Sentiment Analysis of City Tour Using Big Data

  • Se-won Jeon;Gi-Hwan Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.112-117
    • /
    • 2023
  • This study aims to find out what tourists' interests and perceptions are like through online big data. Big data for a total of five years from 2018 to 2022 were collected using the Textom program. Sentiment analysis was performed with the collected data. Sentiment analysis expresses the necessity and emotions of city tours in online reviews written by tourists using city tours. The purpose of this study is to extract and analyze keywords representing satisfaction. The sentiment analysis program provided by the big data analysis platform "TEXTOM" was used to study positives and negatives based on sentiment analysis of tourists' online reviews. Sentiment analysis was conducted by collecting reviews related to the city tour. The degree of positive and negative emotions for the city tour was investigated and what emotional words were analyzed for each item. As a result of big data sentiment analysis to examine the emotions and sentiments of tourists about the city tour, 93.8% positive and 6.2% negative, indicating that more than half of the tourists are positively aware. This paper collects tourists' opinions based on the analyzed sentiment analysis, understands the quality characteristics of city tours based on the analysis using the collected data, and sentiment analysis provides important information to the city tour platform for each region.

Measuring Hotel Service Quality Using Social Media Analytics: The Moderating Effects of Brand of Origin

  • Byounggu Choi;Shin-Hyeok Kang
    • Asia pacific journal of information systems
    • /
    • v.33 no.3
    • /
    • pp.677-701
    • /
    • 2023
  • With the rapid advancement of social media analytics and artificial intelligence, many studies have used online customer reviews as an important source to measure service quality in many industries, including the hotel industry. However, these studies have failed to identify the relative importance of different dimensions of service quality and their role in customer satisfaction. To fill this research gap, this study aims to identify the effects of service quality on hotel customer satisfaction from the multidimensional perspectives using sentiment analysis with self-training on online reviews. Additionally, the moderating role of the brand of origin for each service quality dimension is also investigated. Drawing on the SERVQUAL model and brand of origin concept, this study develops 12 hypotheses and empirically tests them using 30,070 online customer hotel reviews collected from TripAdvisor.com. The results indicated that overall service quality and each dimension of SERVQUAL significantly influenced customer satisfaction of hotels. The results also confirmed the moderating effects of brand of origin on overall service quality. However, the moderating effects of brand of origin for the tangible, reliability, and empathy dimensions of service quality were significant, whereas the effects for responsiveness and assurance were not. This study sheds new light on service quality measurement by analyzing the multidimensional features of service quality and the role of brand of origin in the hotel service context.

A Study on Recommendation System Using Data Mining Techniques for Large-sized Music Contents (대용량 음악콘텐츠 환경에서의 데이터마이닝 기법을 활용한 추천시스템에 관한 연구)

  • Kim, Yong;Moon, Sung-Been
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.2
    • /
    • pp.89-104
    • /
    • 2007
  • This research attempts to give a personalized recommendation framework in large-sized music contents environment. Despite of existing studios and commercial contents for recommendation systems, large online shopping malls are still looking for a recommendation system that can serve personalized recommendation and handle large data in real-time. This research utilizes data mining technologies and new pattern matching algorithm. A clustering technique is used to get dynamic user segmentations using user preference to contents categories. Then a sequential pattern mining technique is used to extract contents access patterns in the user segmentations. And the recommendation is given by our recommendation algorithm using user contents preference history and contents access patterns of the segment. In the framework, preprocessing and data transformation and transition are implemented on DBMS. The proposed system is implemented to show that the framework is feasible. In the experiment using real-world large data, personalized recommendation is given in almost real-time and shows acceptable correctness.

Anomaly Intrusion Detection based on Association Rule Mining in a Database System (데이터베이스 시스템에서 연관 규칙 탐사 기법을 이용한 비정상 행위 탐지)

  • Park, Jeong-Ho;Oh, Sang-Hyun;Lee, Won-Suk
    • The KIPS Transactions:PartC
    • /
    • v.9C no.6
    • /
    • pp.831-840
    • /
    • 2002
  • Due to the advance of computer and communication technology, intrusions or crimes using a computer have been increased rapidly while tremendous information has been provided to users conveniently Specially, for the security of a database which stores important information such as the private information of a customer or the secret information of a company, several basic suity methods of a database management system itself or conventional misuse detection methods have been used. However, a problem caused by abusing the authority of an internal user such as the drain of secret information is more serious than the breakdown of a system by an external intruder. Therefore, in order to maintain the sorority of a database effectively, an anomaly defection technique is necessary. This paper proposes a method that generates the normal behavior profile of a user from the database log of the user based on an association mining method. For this purpose, the Information of a database log is structured by a semantically organized pattern tree. Consequently, an online transaction of a user is compared with the profile of the user, so that any anomaly can be effectively detected.

Analysis of Dental Hygienist Job Recognition Using Text Mining

  • Kim, Bo-Ra;Ahn, Eunsuk;Hwang, Soo-Jeong;Jeong, Soon-Jeong;Kim, Sun-Mi;Han, Ji-Hyoung
    • Journal of dental hygiene science
    • /
    • v.21 no.1
    • /
    • pp.70-78
    • /
    • 2021
  • Background: The aim of this study was to analyze the public demand for information about the job of dental hygienists by mining text data collected from the online Q & A section on an Internet portal site. Methods: Text data were collected from inquiries that were posted on the Naver Q & A section from January 2003 to July 2020 using "dental hygienist job recognition," "role recognition," "medical assistance," and "scaling" as search keywords. Text mining techniques were used to identify significant Korean words and their frequency of occurrence. In addition, the association between words was analyzed. Results: A total of 10,753 Korean words related to the job of dental hygienists were extracted from the text data. "Chi-lyo (treatment)," "chigwa (dental clinic)," "ske-illing (scaling)," "itmom (gum)," and "chia (tooth)" were the five most frequently used words. The words were classified into the following areas of job of the dental hygienist: periodontal disease treatment and prevention, medical assistance, patient care and consultation, and others. Among these areas, the number of words related to medical assistance was the largest, with sixty-six association rules found between the words, and "chi-lyo," "chigwa," and "ske-illing" as core words. Conclusion: The public demand for information about the job of dental hygienists was mainly related to "chi-lyo," "chigwa," and "ske-illing" as core words, demonstrating that scaling is recognized by the public as the job of a dental hygienist. However, the high demand for information related to treatment and medical assistance in the context of dental hygienists indicates that the job of dental hygienists is recognized by the public as being more focused on medical assistance than preventive dental care that are provided with job autonomy.