• Title/Summary/Keyword: Online data

Search Result 4,472, Processing Time 0.03 seconds

A study analyzing statistical reasoning strategies and levels of secondary mathematics teachers: Focusing on comparing two groups using boxplots (중등수학교사들의 통계적 추론 전략 및 수준 분석 연구: 상자그림을 활용한 두 집단 비교를 중심으로)

  • YoungMyong Jee
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.505-526
    • /
    • 2024
  • The goal of this study was to derive implications for the design of teacher training programs related to boxplots by examining the statistical reasoning patterns of mathematics teachers in group comparison tasks using boxplots. For this purpose, 48 secondary mathematics teachers who participated in a teacher statistics camp at a local office of education were selected as participants. Four sessions of teacher training were then conducted, including basic statistical concepts related to boxplots and group comparison activities using them. Afterwards, surveys with group comparison questions using boxplots and online interviews were conducted. The collected data were analyzed with a focus on the research questions. As a result, most participants relied on summary and spread elements to reason when comparing two groups using boxplots. On the other hand, participants paid little attention to shift and signal elements, and no responses using sampling elements were identified. Additionally, the overall comparative reasoning level of the participants was primarily at level 1 with the highest frequency (44%), and no responses reached level 3. Based on these research results, this paper derives implications for the design of teacher training programs related to boxplots and provides suggestions for follow-up research.

The Effects of Gamification of e-Learning Platforms on Engagement: Focusing on Moderating Effects of Interaction, Difficulty, and Length (e-러닝 플랫폼의 게임화가 인게이지먼트에 미치는 영향: 상호작용, 스터디 난이도, 스터디 길이의 조절효과를 중심으로)

  • Ohsung Kim;Jungwon Lee
    • Information Systems Review
    • /
    • v.26 no.1
    • /
    • pp.73-91
    • /
    • 2024
  • Recently, e-learning platforms are rapidly growing by innovating the education industry by applying various IT technologies. Because student participation in the online environment is considered a prerequisite for learning, low participation rates are considered one of the most important issues determining the performance of e-learning platforms. Gamification has grown rapidly over the past decades and is highly valued for its applicability in education because it is expected to enhance learning motivation. However, despite the interest of researchers, previous studies have reported conflicting results on the effect of gamification on participation rates in the context of e-learning platforms, and have mainly studied structural gamification, but have not sufficiently addressed the effects of content gamification. In this context, this study aims to analyze the effect of content gamification on e-learning platform engagement and to explore the boundary conditions moderating this effect. For empirical analysis, 5,017 data registered from February 11, 2022 to May 31, 2022 were analyzed for the education platform entry (https://playentry.org). The propensity score matching method and Poisson multilevel regression model were applied as analysis methods. As a result of the analysis, content gamification had a statistically significant effect on engagement, and the interaction effects of interaction and content difficulty were statistically significant.

Effects of Job Stress, Self-Efficacy, and Mindfulness on Job Satisfaction according to MBTI Personality of Nurses (간호사의 MBTI 유형에 따른 직무스트레스, 자기효능감, 마음챙김이 직무만족도에 미치는 영향)

  • Kim Hyang Mi;Park Meera
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.173-180
    • /
    • 2024
  • The purpose of this study was to investigate the effects of job stress, self-efficacy, and mindfulness on job satisfaction according to the MBTI type of nurses. The subjects of this study were 163 nurses working in medical institutions across the country, and data were collected from March 28 to April 20, 2024 through online (Google) questionnaires. MBTI preference indices were introvert type (I), sensory type (S), emotional type (F), and judgment type (J). In MBTI's four psychological function types, SF type was the most, SJ type was the most in MBTI's four psychological temperament types, and ISFJ type was the most in MBTI's 16 personality types. In this study, job satisfaction had a negative correlation with job stress, and self-efficacy and mindfulness had a positive correlation. As a result of this study, the factors affecting job satisfaction were job stress and self-efficacy, and the explanatory power was 43.6%. In order to improve the job satisfaction of nurses, it is necessary to develop stress management and self-efficacy enhancement programs and verify them.

A Study on the Participation Status and Improvement Measures of Reading Culture Programs for Public Library Users in Busan (부산지역 공공도서관 이용자의 독서문화프로그램 참여 실태 및 개선방안에 관한 연구)

  • Youngji Shin;Eun-Ju Lee;You-Ra Youn
    • Journal of Korean Library and Information Science Society
    • /
    • v.55 no.3
    • /
    • pp.285-312
    • /
    • 2024
  • This study aims to secure basic data for the development of locally customized reading culture programs by closely examining and analyzing the reading practices of local library users, their evaluation and improvement of existing reading culture programs, and the types and directions of reading culture programs they would like to see in the future. To this end, a survey was conducted among users of public libraries in the Busan area and the results were analyzed. The survey was conducted online and offline, with 609 respondents. Based on the results of this study, the following implications can be drawn: First, the definition of reading activities is expanding beyond traditional paper books to various digital media, and it is necessary to reflect this change in future program development. Second, as lack of time and lack of information were identified as the main reasons for non-participation in reading activities, libraries and related organizations should offer programs at more flexible times and expand participation opportunities through effective promotion strategies. Third, the continuity and diversity of library reading culture programs should be strengthened, and fourth, they should be differentiated in terms of topics, time, size, and type by age group. Finally, programs should be improved through continuous user surveys. The results of this study can be used as a basis for improving and developing library reading culture programs in the future.

Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China (인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로)

  • Lee, JaeWon;Oh, SangJin
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.71-90
    • /
    • 2020
  • Recently, the global insurance industry is rapidly developing digital transformation through the use of artificial intelligence technologies such as machine learning, natural language processing, and deep learning. As a result, more and more foreign insurers have achieved the success of artificial intelligence technology-based InsurTech and platform business, and Ping An Insurance Group Ltd., China's largest private company, is leading China's global fourth industrial revolution with remarkable achievements in InsurTech and Digital Platform as a result of its constant innovation, using 'finance and technology' and 'finance and ecosystem' as keywords for companies. In response, this study analyzed the InsurTech and platform business activities of Ping An Insurance Group Ltd. through the ser-M analysis model to provide strategic implications for revitalizing AI technology-based businesses of domestic insurers. The ser-M analysis model has been studied so that the vision and leadership of the CEO, the historical environment of the enterprise, the utilization of various resources, and the unique mechanism relationships can be interpreted in an integrated manner as a frame that can be interpreted in terms of the subject, environment, resource and mechanism. As a result of the case analysis, Ping An Insurance Group Ltd. has achieved cost reduction and customer service development by digitally innovating its entire business area such as sales, underwriting, claims, and loan service by utilizing core artificial intelligence technologies such as facial, voice, and facial expression recognition. In addition, "online data in China" and "the vast offline data and insights accumulated by the company" were combined with new technologies such as artificial intelligence and big data analysis to build a digital platform that integrates financial services and digital service businesses. Ping An Insurance Group Ltd. challenged constant innovation, and as of 2019, sales reached $155 billion, ranking seventh among all companies in the Global 2000 rankings selected by Forbes Magazine. Analyzing the background of the success of Ping An Insurance Group Ltd. from the perspective of ser-M, founder Mammingz quickly captured the development of digital technology, market competition and changes in population structure in the era of the fourth industrial revolution, and established a new vision and displayed an agile leadership of digital technology-focused. Based on the strong leadership led by the founder in response to environmental changes, the company has successfully led InsurTech and Platform Business through innovation of internal resources such as investment in artificial intelligence technology, securing excellent professionals, and strengthening big data capabilities, combining external absorption capabilities, and strategic alliances among various industries. Through this success story analysis of Ping An Insurance Group Ltd., the following implications can be given to domestic insurance companies that are preparing for digital transformation. First, CEOs of domestic companies also need to recognize the paradigm shift in industry due to the change in digital technology and quickly arm themselves with digital technology-oriented leadership to spearhead the digital transformation of enterprises. Second, the Korean government should urgently overhaul related laws and systems to further promote the use of data between different industries and provide drastic support such as deregulation, tax benefits and platform provision to help the domestic insurance industry secure global competitiveness. Third, Korean companies also need to make bolder investments in the development of artificial intelligence technology so that systematic securing of internal and external data, training of technical personnel, and patent applications can be expanded, and digital platforms should be quickly established so that diverse customer experiences can be integrated through learned artificial intelligence technology. Finally, since there may be limitations to generalization through a single case of an overseas insurance company, I hope that in the future, more extensive research will be conducted on various management strategies related to artificial intelligence technology by analyzing cases of multiple industries or multiple companies or conducting empirical research.

Relationship Between Usage Needs Satisfaction and Commitment to Apparel Brand Communities: Moderator Effect of Apparel Brand Image (의류 브랜드 커뮤니티의 이용욕구 충족과 커뮤니티 몰입의 관계: 의류 브랜드 이미지의 조절효과)

  • Hong, Hee-Sook;Ryu, Sung-Min;Moon, Chul-Woo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.4
    • /
    • pp.51-89
    • /
    • 2007
  • INTRODUCTION Due to the high broadband internet penetration rate and its group-oriented culture, various types of online communities operate in Korea. This study use 'Uses and Gratification Approach, and argue that members' usage-needs satisfaction with brand community is an important factor for promoting community commitment. Based on previous studies identifying the effect of brand image on consumers' responses to various marketing stimuli, this study hypothesizes that brand image can be a moderate variable affecting the relationship between usage-needs satisfaction with brand community and members' commitment to brand community. This study analyzes the influence of usage-needs satisfaction on brand community commitment and how apparel brand image affects the relationships between usage-needs satisfactions and community commitments. The hypotheses of this study are proposed as follows. H1-3: The usage-needs satisfaction of apparel brand community (interest, transaction, relationship needs) influences emotional (H1), continuous (H2), and normative (H3) commitments to apparel brand communities. H4-6: Apparel brand image has a moderating effect on the relationship between usage-needs satisfaction and emotional (H4), continuous (H5), and normative (H6) commitments to apparel brand communities. METHODS Brand communities founded by non-company affiliates were excluded and emphasis was placed instead on communities created by apparel brand companies. Among casual apparel brands registered in 6 Korean portal sites in August 2003, a total of 9 casual apparel brand online communities were chosen, depending on the level of community activity and apparel brand image. Data from 317 community members were analyzed by exploratory factor analysis, moderated regression analysis, ANOVA, and scheffe test. Among 317 respondents answered an online html-type questionnaire, 80.5% were between 16 to 25 years old. There were a total of 150 respondents from apparel brand communities(n=3) recording higher-than-average brand image scores (Mean > 3.75) and a total of 162 respondents from apparel brand communities(n=6) recording lower-than-average brand image scores(Mean < 3.75). In this study, brand community commitment was measured by a 5-point Likert scale: emotional, continuous and normative commitment. The degree of usage-needs satisfaction (interest, transaction, relationship needs) was measured on a 5-point Likert scale. The level of brand image was measured by a 5-point Likert scale: strength, favorability, and uniqueness of brand associations. RESULTS In the results of exploratory factor analysis, the three usage-needs satisfactions with brand community were classified as interest, transaction, and relationship needs. Brand community commitment was also divided into the multi-dimensional factors: emotional, continuous, and normative commitments. The regression analysis (using a stepwise method) was used to test the influence of 3 independent variables (interest-needs satisfaction, transaction-needs, and relationship-needs satisfactions) on the 3 dependent variables (emotional, continuous and normative commitments). The three types of usage-needs satisfactions are positively associated with the three types of commitments to apparel brand communities. Therefore, hypothesis 1, 2, and 3 were significantly supported. Moderating effects of apparel brand image on the relationship between usage-needs satisfaction and brand community commitments were tested by moderated regression analysis. The statistics result showed that the influence of transaction-needs on emotional commitment was significantly moderated by apparel brand image. In addition, apparel brand image had moderating effects on the relationship between relationship-needs satisfaction and emotional, continuous and normative commitments to apparel brand communities. However, there were not significant moderate effects of apparel brand image on the relationships between interest-needs satisfaction and 3 types of commitments (emotional, continuous and normative commitments) to apparel brand communities. In addition, the influences of transaction-needs satisfaction on 2 types of commitments (continuous and normative commitments) were not significantly moderated by apparel brand image. Therefore, hypothesis 4, 5 and 6 were partially supported. To explain the moderating effects of apparel brand image, four cross-tabulated groups were made by averages of usage-needs satisfaction (interest-needs satisfaction avg. M=3.09, transaction-needs satisfaction avg. M=3.46, relationship-needs satisfaction M=1.62) and the average apparel brand image (M=3.75). The average scores of commitments in each classified group are presented in Tables and Figures. There were significant differences among four groups. As can be seen from the results of scheffe test on the tables, emotional commitment in community group with high brand image was higher than one in community group with low brand image when transaction-needs satisfaction was high. However, when transaction-needs satisfaction was low, there was not any difference between the community group with high brand image and community group with low brand image regarding emotional commitment to apparel brand communities. It means that emotional commitment didn't increase significantly without high satisfaction of transaction-needs, despite the high apparel brand image. In addition, when apparel brand image was low, increase in transaction-needs did not lead to the increase in emotional commitment. Therefore, the significant relationship between transaction-needs satisfaction and emotional commitment was found in only brand communities with high apparel brand image, and the moderating effect of apparel brand image on this relationship between two variables was found in the communities with high satisfaction of transaction-needs only. Statistics results showed that the level of emotional commitment is related to the satisfaction level of transaction-needs, while overall response is related to the level of apparel brand image. We also found that the role of apparel brand image as a moderating factor was limited by the level of transaction-needs satisfaction. In addition, relationship-needs satisfaction brought significant increase in emotional commitment in both community groups (high and low levels of brand image), and the effect of apparel brand image on emotional commitment was significant in both community groups (high and low levels of relationship-needs satisfaction). Especially, the effect of brand image was greater when the level of relationship-needs satisfaction was high. in contrast, increase in emotional commitment responding to increase in relationship-needs satisfaction was greater when apparel brand image is high. The significant influences of relationship-needs satisfaction on community commitments (continuous and normative commitments) were found regardless of apparel brand image(in both community groups with low and high brand image). However, the effects of apparel brand image on continuous and normative commitments were found in only community group with high satisfaction level of relationship-needs. In the case of communities with low satisfaction levels of relationship needs, apparel brand image marginally increases continuous and normative commitments. Therefore, we could not find the moderating effect of apparel brand image on the relationship between relationship-needs satisfaction and continuous and normative commitments in community groups with low satisfaction levels of relationship needs, CONCLUSIONS AND IMPLICATIONS From the results of this study, we draw several conclusions; First, the increases in usage-needs satisfactions through apparel brand communities result in the increases in commitments to apparel brand communities, wheres the degrees of such relationship depends on the level of apparel brand image. That is, apparel brand image is a moderating factor strengthening the relationship between usage-needs satisfaction and commitment to apparel brand communities. In addition, the effect of apparel brand image differs, depending on the level and types of community usage-needs satisfactions. Therefore, marketers of apparel brand companies must determine the appropriate usage-needs, depending on the type of commitment they wish to increase and the level of their apparel brand image, to promote member's commitments to apparel brand communities. Especially, relationship-needs satisfaction was very important factor for increasing emotional, continuous and normative commitments to communities. However the level of relationship-needs satisfaction was lower than interest-needs and transaction-needs. satisfaction. According to previous study on apparel brand communities, relationship-need satisfaction was strongly related to member's intention of participation in their communities. Therefore, marketers need to develope various strategies in order to increase the relationship- needs as well as interest and transaction needs. In addition, despite continuous commitment was higher than emotional and normative commitments, all types of commitments to apparel brand communities had scores lower than 3.0 that was mid point in 5-point scale. A Korean study reported that the level of members' commitment to apparel brand community influenced customers' identification with a brand and brand purchasing behavior. Therefore, marketers should try to increase members' usage-needs satisfaction and apparel brand image as the necessary conditions for bringing about community commitments. Second, marketers should understand that they should keep in mind that increasing the level of community usage needs (transaction and relationship) is most effective in raising commitment when the level of apparel brand image is high, and that increasing usage needs (transaction needs) satisfaction in communities with low brand image might not be as effective as anticipated. Therefore, apparel companies with desirable brand image such as luxury designer goods firms need to create formal online brand communities (as opposed to informal communities with rudimentary online contents) to satisfy transaction and relationship needs systematically. It will create brand equity through consumers' increased emotional, continuous and normative commitments. Even though apparel brand is very famous, emotional commitment to apparel brand communities cannot be easily increased without transaction-needs satisfaction. Therefore famous fashion brand companies should focus on developing various marketing strategies to increase transaction-needs satisfaction.

  • PDF

Increasing Accuracy of Classifying Useful Reviews by Removing Neutral Terms (중립도 기반 선택적 단어 제거를 통한 유용 리뷰 분류 정확도 향상 방안)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.129-142
    • /
    • 2016
  • Customer product reviews have become one of the important factors for purchase decision makings. Customers believe that reviews written by others who have already had an experience with the product offer more reliable information than that provided by sellers. However, there are too many products and reviews, the advantage of e-commerce can be overwhelmed by increasing search costs. Reading all of the reviews to find out the pros and cons of a certain product can be exhausting. To help users find the most useful information about products without much difficulty, e-commerce companies try to provide various ways for customers to write and rate product reviews. To assist potential customers, online stores have devised various ways to provide useful customer reviews. Different methods have been developed to classify and recommend useful reviews to customers, primarily using feedback provided by customers about the helpfulness of reviews. Most shopping websites provide customer reviews and offer the following information: the average preference of a product, the number of customers who have participated in preference voting, and preference distribution. Most information on the helpfulness of product reviews is collected through a voting system. Amazon.com asks customers whether a review on a certain product is helpful, and it places the most helpful favorable and the most helpful critical review at the top of the list of product reviews. Some companies also predict the usefulness of a review based on certain attributes including length, author(s), and the words used, publishing only reviews that are likely to be useful. Text mining approaches have been used for classifying useful reviews in advance. To apply a text mining approach based on all reviews for a product, we need to build a term-document matrix. We have to extract all words from reviews and build a matrix with the number of occurrences of a term in a review. Since there are many reviews, the size of term-document matrix is so large. It caused difficulties to apply text mining algorithms with the large term-document matrix. Thus, researchers need to delete some terms in terms of sparsity since sparse words have little effects on classifications or predictions. The purpose of this study is to suggest a better way of building term-document matrix by deleting useless terms for review classification. In this study, we propose neutrality index to select words to be deleted. Many words still appear in both classifications - useful and not useful - and these words have little or negative effects on classification performances. Thus, we defined these words as neutral terms and deleted neutral terms which are appeared in both classifications similarly. After deleting sparse words, we selected words to be deleted in terms of neutrality. We tested our approach with Amazon.com's review data from five different product categories: Cellphones & Accessories, Movies & TV program, Automotive, CDs & Vinyl, Clothing, Shoes & Jewelry. We used reviews which got greater than four votes by users and 60% of the ratio of useful votes among total votes is the threshold to classify useful and not-useful reviews. We randomly selected 1,500 useful reviews and 1,500 not-useful reviews for each product category. And then we applied Information Gain and Support Vector Machine algorithms to classify the reviews and compared the classification performances in terms of precision, recall, and F-measure. Though the performances vary according to product categories and data sets, deleting terms with sparsity and neutrality showed the best performances in terms of F-measure for the two classification algorithms. However, deleting terms with sparsity only showed the best performances in terms of Recall for Information Gain and using all terms showed the best performances in terms of precision for SVM. Thus, it needs to be careful for selecting term deleting methods and classification algorithms based on data sets.

Features of Korean Webtoons through the Statistical Analysis (웹툰 통계 분석을 통한 한국 웹툰의 특징)

  • Yoon, Ki-Heon;Jung, Kiu-Ha;Choi, In-Soo;Choi, Hae-Sol
    • Cartoon and Animation Studies
    • /
    • s.38
    • /
    • pp.177-194
    • /
    • 2015
  • This study that had been conducted two months by a research team of Pusan National University at the request of Korea Manwha Contents Agency in Dec. 2013 is about the statistical analysis on 'Korean Webtoon DB and its Flow Report' which resulted from the complete survey of Korean webtoons which had been published with payment in official media from early 2000 to 2013. Webtoon which means the cartoons published on web has become a typical type of Korean cartoons and has developed into a main industry since 2000s when traditional published cartoons had declined and social environments had changed. Today, it represents cultural contents in Korea. This study collected the webtoons officially published in media with payment, among Korean webtoons having been published from the early 2000s to Jan. Based on the collected data, it analyzed the general characteristics of webtoons, including cartoonists, the number of cartoons, distribution chart of each media, genre, and publication cycle. According to the data analysis and statistics, a great deal of Korean webtoons are still published in main portal websites, but their platform is being diversified and a webtoon's publication cycle tends to be shortened. In terms of genre, traditional popular genres, such as drama, comic, fantasy, and action, are still popular, and the genres of history, sports, and food are on the rise along with a social trend. Regarding webtoon application, such events as relay webtoon and brand webtoon, and a new type of webtoon featuring PPL commercialism appear. Such phenomena can realize the common profits of cartoonists, media, and ordering bodies, and are various trials to test the possibility of webtoons. In addition, what needs to pay attention on in the expansion of webtoons is increasing webtoons for adults. The study subjects are the webtoons published with payment, excluding free webtoons. However, this study failed to collect the webtoons published on the online websites already closed, and the lost information on cartoonists and their lost webtoons, and it is necessary to conduct a complete survey on all webtoons including free ones. Despite the limitations, this study is meaningful in the points that it categorized and analyzed Korean webtoons accoridng to official media, webtoons, cartoonists, and genres and that it provided a fundamental material to understand the current conditions of webtoons. It is expected that this study will be able to contribute to activating more research on webtoons and producing more supplementary data which will be used for the Korean cartoon industry and academia.

Analysis on Procurement Auction System in Public Procurement Service (공공투자사업의 입·낙찰 분석)

  • Kim, Jungwook
    • KDI Journal of Economic Policy
    • /
    • v.32 no.2
    • /
    • pp.144-170
    • /
    • 2010
  • This paper considers the effect of various types of procurement auction system on competition focusing on the rate of successful bidding. We analyze the number of bidders and the rate of successful bids using online procurement data of the Public Procurement Service. The average number of bidders is 301 and the average rate of successful bids is 87.42% while the weighted average rate is 75.13%. These numbers show that there is quite strong competition among bidders and the rate is lower as the expected price is higher. When we analyze the data of price procurement auction, the rate is also shown to be lower as the expected price is higher. Furthermore, the rate decreases as the number of bidders increases which naturally makes the competition stronger. Meanwhile, the analysis finds that the inclusion of the onsite bidding, the PQ(Pre-Qualification) result, or major-10 winning companies cannot explain the rate much in our data. In case of turnkey-alternative, the average rate of successful bidding for 484 cases record 90.20%. The average is 84.89% with 120 alternatives and 91.97% with 364 cases of turnkey. The reason why the rate of turnkey-alternative is lower than that of price procurement auction is the lack of competition as well as the systematic difference. By setting up a model, we are able to explain the difference in rate caused by the respective reason. When we suppose there are 3 bidders in case of price procurement auction for a project that exceeds 100 billion won, the rate is expected to be around 64%. This implies that difference of 26% is caused by the systemic difference and 3% by the lack of competition. Therefore, we conclude that the difference in rate between turnkey-alternative and price procurement auction is caused mainly by the systemic difference. In case of PPP(Public Private Partnership) projects, among 154 projects in total, only 40% has more than 2 bidders that compete. The average number of bidders is 1.88 which is less than 2, and the average rate of successful bids is 90%. In sum, under the price procurement auction, there is strong competition which is reflected by the rate of successful bids. However, there is room to decrease the rate by strengthening the competition under the turnkey-alternative. Also with PPP projects, we expect the rate can be steadily reduced with revived competition among bidders.

  • PDF

Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence (인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구)

  • Cho, Yujung;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.103-128
    • /
    • 2021
  • Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.