• Title/Summary/Keyword: Online clustering

Search Result 108, Processing Time 0.027 seconds

Evaluation of Collaborative Filtering Methods for Developing Online Music Contents Recommendation System (온라인 음악 콘텐츠 추천 시스템 구현을 위한 협업 필터링 기법들의 비교 평가)

  • Yoo, Youngseok;Kim, Jiyeon;Sohn, Bangyong;Jung, Jongjin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1083-1091
    • /
    • 2017
  • As big data technologies have been developed and massive data have exploded from users through various channels, CEO of global IT enterprise mentioned core importance of data in next generation business. Therefore various machine learning technologies have been necessary to apply data driven services but especially recommendation has been core technique in viewpoint of directly providing summarized information or exact choice of items to users in information flooding environment. Recently evolved recommendation techniques have been proposed by many researchers and most of service companies with big data tried to apply refined recommendation method on their online business. For example, Amazon used item to item collaborative filtering method on its sales distribution platform. In this paper, we develop a commercial web service for suggesting music contents and implement three representative collaborative filtering methods on the service. We also produce recommendation lists with three methods based on real world sample data and evaluate the usefulness of them by comparison among the produced result. This study is meaningful in terms of suggesting the right direction and practicality when companies and developers want to develop web services by applying big data based recommendation techniques in practical environment.

Analysis of the Characteristics of Smart Platforms by Type of Community Participation (커뮤니티 참여 유형별 스마트 플랫폼 특성 분석)

  • Kwang-Woo, NAM;Erlando, Sulistia
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.119-135
    • /
    • 2022
  • Digital platforms play crucial roles in terms of enabling and sustaining online communities. However, who really benefits from digital platform development, and what are the benefits digital platforms provide for the development of smart communities. This paper explores this question, the goal was to understand the links between digital platforms and smart communities, using the clustering methodology process to have a better understanding of characteristic of each digital platform, Twenty nine digital platforms is clustered and used as a study case. This paper explores how the categorization of digital platform characteristics encourages participation by a smart community, thus improving information and service delivery. On another side, the rise of digital platforms brings new challenges for policy maker to foster a smart community and firms the digital platform also offer benefits to giving effective and efficient service.

Visualization of movie recommendation system using the sentimental vocabulary distribution map

  • Ha, Hyoji;Han, Hyunwoo;Mun, Seongmin;Bae, Sungyun;Lee, Jihye;Lee, Kyungwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.19-29
    • /
    • 2016
  • This paper suggests a method to refine a massive collective intelligence data, and visualize with multilevel sentiment network, in order to understand information in an intuitive and semantic way. For this study, we first calculated a frequency of sentiment words from each movie review. Second, we designed a Heatmap visualization to effectively discover the main emotions on each online movie review. Third, we formed a Sentiment-Movie Network combining the MDS Map and Social Network in order to fix the movie network topology, while creating a network graph to enable the clustering of similar nodes. Finally, we evaluated our progress to verify if it is actually helpful to improve user cognition for multilevel analysis experience compared to the existing network system, thus concluded that our method provides improved user experience in terms of cognition, being appropriate as an alternative method for semantic understanding.

Spatio-temporal Load Analysis Model for Power Facilities using Meter Reading Data (검침데이터를 이용한 전력설비 시공간 부하분석모델)

  • Shin, Jin-Ho;Kim, Young-Il;Yi, Bong-Jae;Yang, Il-Kwon;Ryu, Keun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1910-1915
    • /
    • 2008
  • The load analysis for the distribution system and facilities has relied on measurement equipment. Moreover, load monitoring incurs huge costs in terms of installation and maintenance. This paper presents a new model to analyze wherein facilities load under a feeder every 15 minutes using meter reading data that can be obtained from a power consumer every 15 minute or a month even without setting up any measuring equipment. After the data warehouse is constructed by interfacing the legacy system required for the load calculation, the relationship between the distribution system and the power consumer is established. Once the load pattern is forecasted by applying clustering and classification algorithm of temporal data mining techniques for the power customer who is not involved in Automatic Meter Reading(AMR), a single-line diagram per feeder is created, and power flow calculation is executed. The calculation result is analyzed using various temporal and spatial analysis methods such as Internet Geographic Information System(GIS), single-line diagram, and Online Analytical Processing (OLAP).

Bagged Auto-Associative Kernel Regression-Based Fault Detection and Identification Approach for Steam Boilers in Thermal Power Plants

  • Yu, Jungwon;Jang, Jaeyel;Yoo, Jaeyeong;Park, June Ho;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1406-1416
    • /
    • 2017
  • In complex and large-scale industries, properly designed fault detection and identification (FDI) systems considerably improve safety, reliability and availability of target processes. In thermal power plants (TPPs), generating units operate under very dangerous conditions; system failures can cause severe loss of life and property. In this paper, we propose a bagged auto-associative kernel regression (AAKR)-based FDI approach for steam boilers in TPPs. AAKR estimates new query vectors by online local modeling, and is suitable for TPPs operating under various load levels. By combining the bagging method, more stable and reliable estimations can be achieved, since the effects of random fluctuations decrease because of ensemble averaging. To validate performance, the proposed method and comparison methods (i.e., a clustering-based method and principal component analysis) are applied to failure data due to water wall tube leakage gathered from a 250 MW coal-fired TPP. Experimental results show that the proposed method fulfills reasonable false alarm rates and, at the same time, achieves better fault detection performance than the comparison methods. After performing fault detection, contribution analysis is carried out to identify fault variables; this helps operators to confirm the types of faults and efficiently take preventive actions.

The feasibility and properties of dividing virtual machine resources using the virtual machine cluster as the unit in cloud computing

  • Peng, Zhiping;Xu, Bo;Gates, Antonio Marcel;Cui, Delong;Lin, Weiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2649-2666
    • /
    • 2015
  • In the dynamic cloud computing environment, to ensure, under the terms of service-level agreements, the maximum efficiency of resource utilization, it is necessary to investigate the online dynamic management of virtual machine resources and their operational application systems/components. In this study, the feasibility and properties of the division of virtual machine resources on the cloud platform, using the virtual machine cluster as the management unit, are investigated. First, the definitions of virtual machine clusters are compared, and our own definitions are presented. Then, the feasibility of division using the virtual machine cluster as the management unit is described, and the isomorphism and reconfigurability of the clusters are proven. Lastly, from the perspectives of clustering and cluster segmentation, the dynamics of virtual machines are described and experimentally compared. This study aims to provide novel methods and approaches to the optimization management of virtual machine resources and the optimization configuration of the parameters of virtual machine resources and their application systems/components in large-scale cloud computing environments.

A Classification of Luxury Fashion Brands' E-commerce Sites

  • Kim, Sunghee
    • Journal of Fashion Business
    • /
    • v.17 no.6
    • /
    • pp.125-140
    • /
    • 2013
  • The aim of this study was to analyze e-commerce sites of luxury fashion brands in order to provide insights on how to enhance online site quality. For the research, forty-eight components of thirty-one luxury fashion brands' e-commerce sites were investigated during October 2013. For the analysis of clustering e-commerce site components and segmenting e-commerce sites of luxury brands, a hierarchical cluster analysis was applied through using the Ward's method and squared Euclidian distance for binary data. Further, Fisher's exact test was applied in order to distinguish three groups of characteristics in the luxury e-commerce sites. These analyses were carried out by SPSS 21. The result indicated that the components of e-commerce sites were grouped into three categories: basic elements, additional elements and elements of building brand identity. These components were categorized by whether their functions were basic and essential or additional and advanced. The other norm of categorization was related to brand identity. Furthermore, the luxury brands' e-commerce sites were segmented into three groups: a group of endeavoring to promote goods, a group of undistinguished performance, and a group of endeavoring to intensify brand identity. In this segmentation, brand identity or promotional aspects were decisive. Overall, luxury brands were trying to convey their traditional strength through their e-commerce sites. In order to achieve this purpose, brand identity or promotional aspects played an important role.

Development of dental services markets segmentation and strategy by use of conjoint analysis (컨조인트 분석을 이용한 치과 의료서비스 시장 세분화와 전략 개발)

  • Kim, Jin-Hwan;Kim, Jae-Hwan;Kim, Myeng-Ki
    • Health Policy and Management
    • /
    • v.20 no.3
    • /
    • pp.1-20
    • /
    • 2010
  • Objectives : This study is purposed to segment dental service markets with reflecting customer's preference and to suggest some marketing strategies applied to each segmented market. Methods : The customer's data collected from a series of online survey comprise such factors as expertise of dentist, courtesy, clinic size, equipment, price and distance, including some socio-demographics. A conjoint analysis and a clustering analysis with estimated coefficients were performed to find out some dental market segments for three dental service types such as dental caries, esthetic treatments and dental implants. Results : Three or four market segments for each dental service type are derived from the analysis, and subsequently market characteristics for each derived segment are explored. Furthermore, some dental marketing strategies for each segment are suggested for better management. Conclusion : A conventional way of developing dental marketing strategies can be improved, while specific customer's preference are responded.

Influence Maximization against Social Adversaries (소셜 네트워크 내 경쟁 집단에의 영향력 최대화 기법)

  • Jeong, Sihyun;Noh, Giseop;Oh, Hayoung;Kim, Chong-Kwon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2015
  • Online social networks(OSN) are very popular nowadays. As OSNs grows, the commercial markets are expanding their social commerce by applying Influence Maximization. However, in reality, there exist more than two players(e.g., commercial companies or service providers) in this same market sector. To address the Influence Maximization problem between adversaries, we first introduced Influence Maximization against the social adversaries' problem. Then, we proposed an algorithm that could efficiently solve the problem efficiently by utilizing social network properties such as Betweenness Centrality, Clustering Coefficient, Local Bridge and Ties and Triadic Closure. Moreover, our algorithm performed orders of magnitudes better than the existing Greedy hill climbing algorithm.

Robust Segmentation for Low Quality Cell Images from Blood and Bone Marrow

  • Pan Chen;Fang Yi;Yan Xiang-Guo;Zheng Chong-Xun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.637-644
    • /
    • 2006
  • Biomedical image is often complex. An applied image analysis system should deal with the images which are of quite low quality and are challenging to segment. This paper presents a framework for color cell image segmentation by learning and classification online. It is a robust two-stage scheme using kernel method and watershed transform. In first stage, a two-class SVM is employed to discriminate the pixels of object from background; where the SVM is trained on the data which has been analyzed using the mean shift procedure. A real-time training strategy is also developed for SVM. In second stage, as the post-processing, local watershed transform is used to separate clustering cells. Comparison with the SSF (Scale space filter) and classical watershed-based algorithm (those are often employed for cell image segmentation) is given. Experimental results demonstrate that the new method is more accurate and robust than compared methods.