• Title/Summary/Keyword: Online Review Users

Search Result 186, Processing Time 0.023 seconds

A Study on the Interaction Factors Influencing Use Intention of Interactive Video Services: focusing on Timing Flexibility (인터랙티브 비디오 서비스 사용 의도에 영향을 미치는 상호 작용성 요인에 관한 연구: 시간 유연성 개념을 중심으로)

  • Yang, Seung-Hwa;Lim, Seong-Taek;Lee, Su-Jin;Lee, In-Seong;Kim, Jin-Woo
    • Information Systems Review
    • /
    • v.10 no.2
    • /
    • pp.71-96
    • /
    • 2008
  • Interactive Video Service(IVS) is a new type of media service that enables users to interact with others in the process of casting and watching videos in a system. 'Timing flexibility', which divides IVS into real-time IVS and non-real-time IVS, is one of the significant factors of interactivity. The objective of this study is to identify critical factors of interactivity in IVS and to compare their effects in terms of timing flexibility. To achieve the objective, prior literature has been reviewed to establish a theoretical framework, and twelve active users of IVS have been interviewed to develop research model of IVS. Finally, an online survey has been conducted to verify the research model. The results indicate that Technical Factor, Communication Factor, and Contents Factor of IVS are found to be the important interaction factors in IVS; and their impacts on the intention to use IVS were found to be affected by timing flexibility. This paper ends with theoretical and practical implications of study results.

A Study on Detecting Fake Reviews Using Machine Learning: Focusing on User Behavior Analysis (머신러닝을 활용한 가짜리뷰 탐지 연구: 사용자 행동 분석을 중심으로)

  • Lee, Min Cheol;Yoon, Hyun Shik
    • Knowledge Management Research
    • /
    • v.21 no.3
    • /
    • pp.177-195
    • /
    • 2020
  • The social consciousness on fake reviews has triggered researchers to suggest ways to cope with them by analyzing contents of fake reviews or finding ways to discover them by means of structural characteristics of them. This research tried to collect data from blog posts in Naver and detect habitual patterns users use unconsciously by variables extracted from blogs and blog posts by a machine learning model and wanted to use the technique in predicting fake reviews. Data analysis showed that there was a very high relationship between the number of all the posts registered in the blog of the writer of the related writing and the date when it was registered. And, it was found that, as model to detect advertising reviews, Random Forest is the most suitable. If a review is predicted to be an advertising one by the model suggested in this research, it is very likely that it is fake review, and that it violates the guidelines on investigation into markings and advertising regarding recommendation and guarantee in the Law of Marking and Advertising. The fact that, instead of using analysis of morphemes in contents of writings, this research adopts behavior analysis of the writer, and, based on such an approach, collects characteristic data of blogs and blog posts not by manual works, but by automated system, and discerns whether a certain writing is advertising or not is expected to have positive effects on improving efficiency and effectiveness in detecting fake reviews.

Research on Case Analysis of Library E-learning Platforms: Focusing on Learning Contents and Functions (도서관 이러닝 플랫폼 사례분석 연구 - 학습 내용 및 기능을 중심으로 -)

  • SangEun, Cho;KyungMook, Oh
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.34 no.1
    • /
    • pp.209-238
    • /
    • 2023
  • This study aims to propose the main learning contents, functions and activation plans for building an e-learning platform for libraries through a literature review, case analysis and expert survey. Through the literature review, it was found that libraries must play a role in providing high-quality online education for users in the e-learning ecosystem. Based on the previous studies, a learning function analysis tool was developed for the analysis of the library's e-learning platform. Based on this, the learning contents, learning functions and characteristics of library e-learning platforms were analyzed, and expert surveys and interviews were conducted. As a results, the construction of a platform for effectively applying learning processes and technology is essential for the library's sustainable e-learning services. The contents that should be provided for characteristics of library education, reading guidance, information literacy instruction, library usage instruction, and the latest IT technologies. And The main learning functions include the ability to conduct video lectures and real-time classes among learning types, and learning activity support functions, a cloud platform support function and a personalized environment support function. Additionally, suggested re-education for library staff to improve their technical skills and the formation of an e-learning team.

The Overview of the Public Opinion Survey and Emerging Ethical Challenges in the Healthcare Big Data Research (보건의료빅데이터 연구에 대한 대중의 인식도 조사 및 윤리적 고찰)

  • Cho, Su Jin;Choe, Byung In
    • The Journal of KAIRB
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2022
  • Purpose: The traditional ethical study only suggests a blurred insight on the research using medical big data, especially in this rapid-changing and demanding environment which is called "4th Industry Revolution." Current institutional/ethical issues in big data research need to approach with the thoughtful insight of past ethical study reflecting the understanding of present conditions of this study. This study aims to examine the ethical issues that are emerging in recent health care big data research. So, this study aims to survey the public perceptions on of health care big data as part of the process of public discourse and the acceptance of the utility and provision of big data research as a subject of health care information. In addition, the emerging ethical challenges and how to comply with ethical principles in accordance with principles of the Belmont report will be discussed. Methods: Survey was conducted from June 3th August to 6th September 2020. The online survey was conducted through voluntary participation through Internet users. A total of 319 people who completed the survey (±5.49%P [95% confidence level] were analyzed. Results: In the area of the public's perspective, the survey showed that the medical information is useful for new medical development, but it is also necessary to obtain consents from subjects in order to use that medical information for various research purposes. In addition, many people were more concerned about the possibility of re-identifying personal information in medical big data. Therefore, they mentioned the necessity of transparency and privacy protection in the use of medical information. Conclusion: Big data on medical care is a core resource for the development of medicine directly related to human life, and it is necessary to open up medical data in order to realize the public good. But the ethical principles should not be overlooked. The right to self-determination must be guaranteed by means of clear, diverse consent or withdrawal of subjects, and processed in a lawful, fair and transparent manner in the processing of personal information. In addition, scientific and ethical validity of medical big data research is indispensable. Such ethical healthcare data is the only key that will lead to innovation in the future.

  • PDF

Comparisons of Popularity- and Expert-Based News Recommendations: Similarities and Importance (인기도 기반의 온라인 추천 뉴스 기사와 전문 편집인 기반의 지면 뉴스 기사의 유사성과 중요도 비교)

  • Suh, Kil-Soo;Lee, Seongwon;Suh, Eung-Kyo;Kang, Hyebin;Lee, Seungwon;Lee, Un-Kon
    • Asia pacific journal of information systems
    • /
    • v.24 no.2
    • /
    • pp.191-210
    • /
    • 2014
  • As mobile devices that can be connected to the Internet have spread and networking has become possible whenever/wherever, the Internet has become central in the dissemination and consumption of news. Accordingly, the ways news is gathered, disseminated, and consumed have changed greatly. In the traditional news media such as magazines and newspapers, expert editors determined what events were worthy of deploying their staffs or freelancers to cover and what stories from newswires or other sources would be printed. Furthermore, they determined how these stories would be displayed in their publications in terms of page placement, space allocation, type sizes, photographs, and other graphic elements. In turn, readers-news consumers-judged the importance of news not only by its subject and content, but also through subsidiary information such as its location and how it was displayed. Their judgments reflected their acceptance of an assumption that these expert editors had the knowledge and ability not only to serve as gatekeepers in determining what news was valuable and important but also how to rank its value and importance. As such, news assembled, dispensed, and consumed in this manner can be said to be expert-based recommended news. However, in the era of Internet news, the role of expert editors as gatekeepers has been greatly diminished. Many Internet news sites offer a huge volume of news on diverse topics from many media companies, thereby eliminating in many cases the gatekeeper role of expert editors. One result has been to turn news users from passive receptacles into activists who search for news that reflects their interests or tastes. To solve the problem of an overload of information and enhance the efficiency of news users' searches, Internet news sites have introduced numerous recommendation techniques. Recommendations based on popularity constitute one of the most frequently used of these techniques. This popularity-based approach shows a list of those news items that have been read and shared by many people, based on users' behavior such as clicks, evaluations, and sharing. "most-viewed list," "most-replied list," and "real-time issue" found on news sites belong to this system. Given that collective intelligence serves as the premise of these popularity-based recommendations, popularity-based news recommendations would be considered highly important because stories that have been read and shared by many people are presumably more likely to be better than those preferred by only a few people. However, these recommendations may reflect a popularity bias because stories judged likely to be more popular have been placed where they will be most noticeable. As a result, such stories are more likely to be continuously exposed and included in popularity-based recommended news lists. Popular news stories cannot be said to be necessarily those that are most important to readers. Given that many people use popularity-based recommended news and that the popularity-based recommendation approach greatly affects patterns of news use, a review of whether popularity-based news recommendations actually reflect important news can be said to be an indispensable procedure. Therefore, in this study, popularity-based news recommendations of an Internet news portal was compared with top placements of news in printed newspapers, and news users' judgments of which stories were personally and socially important were analyzed. The study was conducted in two stages. In the first stage, content analyses were used to compare the content of the popularity-based news recommendations of an Internet news site with those of the expert-based news recommendations of printed newspapers. Five days of news stories were collected. "most-viewed list" of the Naver portal site were used as the popularity-based recommendations; the expert-based recommendations were represented by the top pieces of news from five major daily newspapers-the Chosun Ilbo, the JoongAng Ilbo, the Dong-A Daily News, the Hankyoreh Shinmun, and the Kyunghyang Shinmun. In the second stage, along with the news stories collected in the first stage, some Internet news stories and some news stories from printed newspapers that the Internet and the newspapers did not have in common were randomly extracted and used in online questionnaire surveys that asked the importance of these selected news stories. According to our analysis, only 10.81% of the popularity-based news recommendations were similar in content with the expert-based news judgments. Therefore, the content of popularity-based news recommendations appears to be quite different from the content of expert-based recommendations. The differences in importance between these two groups of news stories were analyzed, and the results indicated that whereas the two groups did not differ significantly in their recommendations of stories of personal importance, the expert-based recommendations ranked higher in social importance. This study has importance for theory in its examination of popularity-based news recommendations from the two theoretical viewpoints of collective intelligence and popularity bias and by its use of both qualitative (content analysis) and quantitative methods (questionnaires). It also sheds light on the differences in the role of media channels that fulfill an agenda-setting function and Internet news sites that treat news from the viewpoint of markets.

The Effect of the Subjective Wellbeing on the Addiction and Usage Motivation of Social Networking Services: Moderating Effect of Social Tie (SNS 이용동기와 SNS 중독이 주관적 웰빙에 미치는 영향: 사회적 유대감의 조절효과)

  • Noh, Mi-Jin;Jang, Sung-Hee
    • Management & Information Systems Review
    • /
    • v.35 no.4
    • /
    • pp.99-122
    • /
    • 2016
  • The social networking services (SNSs) have become popular among smartphone users, and one of the most popular services. In order to explain users' motivations toward SNS, this study considers uses and gratification theory which can explain individuals' motivations to select certain media channels. The purposes of this study is to investigate the relationships between motivations and addiction of SNS, and between addiction of SNS and decline in the subjective wellbeing. We examine moderating effects of social tie based on the social capital theory in the relationships between SNS addiction and decline in the subjective wellbeing. The motivations of SNS are subdivided into emotional motive (entertainment and fantasy) and cognitive motive (information share burden and challenge burden) based on the use and gratifications theory. The addiction of SNS is subdivided into time tolerance, withdrawal symptoms, interruption, and barrier of living. The data used in this study were collected from 286 SNS users through surveys. The data analysis in this study was performed using AMOS 17.0, and we used SEM(Structural Equation Modeling) methods in order to test the research model. The result shows that the emotional motive(entertainment and fantasy) and cognitive motive(information share burden and challenge burden) have an effect on the addiction of SNS. Especially emotional motive such as entertainment and users' fantasy toward SNS is an important factor that can cause SNS addiction. The addiction of SNS such as time tolerance, withdrawal symptoms, interruption, and barrier of living has an effect on the decline in the subjective wellbeing. Our result show that social tie partially moderates the relationship SNS addiction and decline in the subjective wellbeing. In addition, social tie between interruption of SNS and decline in the subjective wellbeing is an important moderating factor. The results focuses on the understanding toward relationship between SNS addiction based on the online and decline in the subjective wellbeing in the real world. The findings of this study also provides theoretical as well as practical implications which reflect the major features of SNS, and moderating effects of social tie based on the social capital.

  • PDF

Current Trends for National Bibliography through Analyzing the Status of Representative National Bibliographies (주요국 국가서지 현황조사를 통한 국가서지의 최신 경향 분석)

  • Lee, Mihwa;Lee, Ji-Won
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.32 no.1
    • /
    • pp.35-57
    • /
    • 2021
  • This paper is to grasp the current trends of national bibliographies through analyzing representative national bibliographies using literature review, analysis of national bibliographies' web pages and survey. First, in order to conform to the definition of a national bibliography as a record of a national publication, it attempts to include a variety of materials from print to electronic resources, but in reality it cannot contain all the materials, so there are exceptions. It is impossible to create a general selection guide for national bibliography coverage, and a plan that reflects the national characteristics and prepares a valid and comprehensive coverage based on analysis is needed. Second, cooperation with publishers and libraries is being made to efficiently generate national bibliography. For the efficiency of national bibliography generation, changes should be sought such as the standardization and consistency, the collection level metadata description for digital resources, and the creation of national bibliography using linked data. Third, national bibliography is published through the national bibliographic online search system, linked data search, MARC download using PDF, OAI-PMH, SRU, Z39.50, and mass download in RDF/XML format, and is integrated with the online public access catalog or also built separately. Above all, national bibliographies and online public access catalogs need to be built in a way of data reuse through an integrated library system. Fourth, as a differentiated function for national bibliography, various services such as user tagging and national bibliographic statistics are provided along with various browsing functions. In addition, services of analysis of national bibliographic big data, links to electronic publications, and mass download of linked data should be provided, and it is necessary to identify users' needs and provide open services that reflect them in order to develop differentiated services. Through the current trends and considerations of the national bibliographies analyzed in this study, it will be possible to explore changes in national and international national bibliography.

A Study on Improvement of Collaborative Filtering Based on Implicit User Feedback Using RFM Multidimensional Analysis (RFM 다차원 분석 기법을 활용한 암시적 사용자 피드백 기반 협업 필터링 개선 연구)

  • Lee, Jae-Seong;Kim, Jaeyoung;Kang, Byeongwook
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.139-161
    • /
    • 2019
  • The utilization of the e-commerce market has become a common life style in today. It has become important part to know where and how to make reasonable purchases of good quality products for customers. This change in purchase psychology tends to make it difficult for customers to make purchasing decisions in vast amounts of information. In this case, the recommendation system has the effect of reducing the cost of information retrieval and improving the satisfaction by analyzing the purchasing behavior of the customer. Amazon and Netflix are considered to be the well-known examples of sales marketing using the recommendation system. In the case of Amazon, 60% of the recommendation is made by purchasing goods, and 35% of the sales increase was achieved. Netflix, on the other hand, found that 75% of movie recommendations were made using services. This personalization technique is considered to be one of the key strategies for one-to-one marketing that can be useful in online markets where salespeople do not exist. Recommendation techniques that are mainly used in recommendation systems today include collaborative filtering and content-based filtering. Furthermore, hybrid techniques and association rules that use these techniques in combination are also being used in various fields. Of these, collaborative filtering recommendation techniques are the most popular today. Collaborative filtering is a method of recommending products preferred by neighbors who have similar preferences or purchasing behavior, based on the assumption that users who have exhibited similar tendencies in purchasing or evaluating products in the past will have a similar tendency to other products. However, most of the existed systems are recommended only within the same category of products such as books and movies. This is because the recommendation system estimates the purchase satisfaction about new item which have never been bought yet using customer's purchase rating points of a similar commodity based on the transaction data. In addition, there is a problem about the reliability of purchase ratings used in the recommendation system. Reliability of customer purchase ratings is causing serious problems. In particular, 'Compensatory Review' refers to the intentional manipulation of a customer purchase rating by a company intervention. In fact, Amazon has been hard-pressed for these "compassionate reviews" since 2016 and has worked hard to reduce false information and increase credibility. The survey showed that the average rating for products with 'Compensated Review' was higher than those without 'Compensation Review'. And it turns out that 'Compensatory Review' is about 12 times less likely to give the lowest rating, and about 4 times less likely to leave a critical opinion. As such, customer purchase ratings are full of various noises. This problem is directly related to the performance of recommendation systems aimed at maximizing profits by attracting highly satisfied customers in most e-commerce transactions. In this study, we propose the possibility of using new indicators that can objectively substitute existing customer 's purchase ratings by using RFM multi-dimensional analysis technique to solve a series of problems. RFM multi-dimensional analysis technique is the most widely used analytical method in customer relationship management marketing(CRM), and is a data analysis method for selecting customers who are likely to purchase goods. As a result of verifying the actual purchase history data using the relevant index, the accuracy was as high as about 55%. This is a result of recommending a total of 4,386 different types of products that have never been bought before, thus the verification result means relatively high accuracy and utilization value. And this study suggests the possibility of general recommendation system that can be applied to various offline product data. If additional data is acquired in the future, the accuracy of the proposed recommendation system can be improved.

An Analysis of the Internal Marketing Impact on the Market Capitalization Fluctuation Rate based on the Online Company Reviews from Jobplanet (직원을 위한 내부마케팅이 기업의 시가 총액 변동률에 미치는 영향 분석: 잡플래닛 기업 리뷰를 중심으로)

  • Kichul Choi;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.20 no.2
    • /
    • pp.39-62
    • /
    • 2018
  • Thanks to the growth of computing power and the recent development of data analytics, researchers have started to work on the data produced by users through the Internet or social media. This study is in line with these recent research trends and attempts to adopt data analytical techniques. We focus on the impact of "internal marketing" factors on firm performance, which is typically studied through survey methodologies. We looked into the job review platform Jobplanet (www.jobplanet.co.kr), which is a website where employees and former employees anonymously review companies and their management. With web crawling processes, we collected over 40K data points and performed morphological analysis to classify employees' reviews for internal marketing data. We then implemented econometric analysis to see the relationship between internal marketing and market capitalization. Contrary to the findings of extant survey studies, internal marketing is positively related to a firm's market capitalization only within a limited area. In most of the areas, the relationships are negative. Particularly, female-friendly environment and human resource development (HRD) are the areas exhibiting positive relations with market capitalization in the manufacturing industry. In the service industry, most of the areas, such as employ welfare and work-life balance, are negatively related with market capitalization. When firm size is small (or the history is short), female-friendly environment positively affect firm performance. On the contrary, when firm size is big (or the history is long), most of the internal marketing factors are either negative or insignificant. We explain the theoretical contributions and managerial implications with these results.

A Study on the GUI Design of Fashion Customizing Web : Centered on Custom Knitware (패션 커스터마이징 웹 GUI디자인연구 : 커스텀 니트웨어를 중심으로)

  • Jang, Hui-Su;Nam, Won-Suk
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.4
    • /
    • pp.124-137
    • /
    • 2020
  • The need for customized products has also been increasing as more active consumers consume according to their values in recent years. Accordingly, fashion customizing web is becoming popular, but because custom freedom is low, we want to increase custom freedom by applying knitwear. To this end, a theoretical review was conducted through prior research and literature research on customization, knit design, and GUI, and based on this, a case analysis was conducted focusing on knit-making programs and fashion customizing web. Knit designs have more considerations than other fashion design process, resulting in more UIs, so users should use visual elements that are easily recognizable. Therefore, a draft assessment item was derived based on the preceding survey and three Delphi surveys were conducted on experts based on the draft. Each item was modified and deleted during the Delphi research process to produce the Custom Knitware Web GUI Design Guide. Through this study, we were able to identify the need for intuitive understanding and application of knit custom functions in GUI design of custom knitwear web. Through this research, it is expected that this data will be used to improve the usability of custom knitwear websites and to refer to knit design fields that utilize knit machines.