• Title/Summary/Keyword: Online Network

Search Result 1,288, Processing Time 0.028 seconds

Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis (CNN 보조 손실을 이용한 차원 기반 감성 분석)

  • Jeon, Min Jin;Hwang, Ji Won;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.1-22
    • /
    • 2021
  • Aspect Based Sentiment Analysis (ABSA), which analyzes sentiment based on aspects that appear in the text, is drawing attention because it can be used in various business industries. ABSA is a study that analyzes sentiment by aspects for multiple aspects that a text has. It is being studied in various forms depending on the purpose, such as analyzing all targets or just aspects and sentiments. Here, the aspect refers to the property of a target, and the target refers to the text that causes the sentiment. For example, for restaurant reviews, you could set the aspect into food taste, food price, quality of service, mood of the restaurant, etc. Also, if there is a review that says, "The pasta was delicious, but the salad was not," the words "steak" and "salad," which are directly mentioned in the sentence, become the "target." So far, in ABSA, most studies have analyzed sentiment only based on aspects or targets. However, even with the same aspects or targets, sentiment analysis may be inaccurate. Instances would be when aspects or sentiment are divided or when sentiment exists without a target. For example, sentences like, "Pizza and the salad were good, but the steak was disappointing." Although the aspect of this sentence is limited to "food," conflicting sentiments coexist. In addition, in the case of sentences such as "Shrimp was delicious, but the price was extravagant," although the target here is "shrimp," there are opposite sentiments coexisting that are dependent on the aspect. Finally, in sentences like "The food arrived too late and is cold now." there is no target (NULL), but it transmits a negative sentiment toward the aspect "service." Like this, failure to consider both aspects and targets - when sentiment or aspect is divided or when sentiment exists without a target - creates a dual dependency problem. To address this problem, this research analyzes sentiment by considering both aspects and targets (Target-Aspect-Sentiment Detection, hereby TASD). This study detected the limitations of existing research in the field of TASD: local contexts are not fully captured, and the number of epochs and batch size dramatically lowers the F1-score. The current model excels in spotting overall context and relations between each word. However, it struggles with phrases in the local context and is relatively slow when learning. Therefore, this study tries to improve the model's performance. To achieve the objective of this research, we additionally used auxiliary loss in aspect-sentiment classification by constructing CNN(Convolutional Neural Network) layers parallel to existing models. If existing models have analyzed aspect-sentiment through BERT encoding, Pooler, and Linear layers, this research added CNN layer-adaptive average pooling to existing models, and learning was progressed by adding additional loss values for aspect-sentiment to existing loss. In other words, when learning, the auxiliary loss, computed through CNN layers, allowed the local context to be captured more fitted. After learning, the model is designed to do aspect-sentiment analysis through the existing method. To evaluate the performance of this model, two datasets, SemEval-2015 task 12 and SemEval-2016 task 5, were used and the f1-score increased compared to the existing models. When the batch was 8 and epoch was 5, the difference was largest between the F1-score of existing models and this study with 29 and 45, respectively. Even when batch and epoch were adjusted, the F1-scores were higher than the existing models. It can be said that even when the batch and epoch numbers were small, they can be learned effectively compared to the existing models. Therefore, it can be useful in situations where resources are limited. Through this study, aspect-based sentiments can be more accurately analyzed. Through various uses in business, such as development or establishing marketing strategies, both consumers and sellers will be able to make efficient decisions. In addition, it is believed that the model can be fully learned and utilized by small businesses, those that do not have much data, given that they use a pre-training model and recorded a relatively high F1-score even with limited resources.

Effect of Closed-Type SNS Use on Army Soldiers' Perception and Behavior (폐쇄형 SNS의 사용이 군 장병의 지각과 행동에 미치는 영향)

  • Kwon, Woo Young;Baek, Seung Nyoung
    • Information Systems Review
    • /
    • v.17 no.2
    • /
    • pp.193-218
    • /
    • 2015
  • The purpose of this study is to investigate the effects of closed-type SNS use (i.e., Naver Band) on the perception and behavior of the Korean Army soldiers. In contrast to open-type SNS (e.g., Facebook or Twitter), Naver Band is an online communication service system mostly based on confined offline social network. Therefore, it increases communication between acquaintances who have previously formed relationships. Although the Korean Army recently began to use Naver Band as a method of communication between soldiers, their parents/acquaintance, and Army commanders (or leaders), little research has been done about how this use directly affects army soldiers. Hence, applying the motivation opportunity ability theory of behavior, this study examines how enjoyment (Motivational factor), social ties (Opportunity factor), and social intelligence (Ability factor) affect soldiers' belongingness to their organization and organizational citizenship behavior (OCB). We also hypothesize that army soldiers' belongingness and OCB may enhance their individual performance. Survey results show that enjoyment, social ties, and social intelligence increase army soldiers' belongingness, which leads to OCB. Also, enhanced OCB increases individual performance. However, the effect of enjoyment and social ties on soldiers' OCB is non-significant and soldiers' belongingness does not have influence on individual performance. Theoretical and practical implications are presented.

The Effect of Herding Behavior and Perceived Usefulness on Intention to Purchase e-Learning Content: Comparison Analysis by Purchase Experience (무리행동과 지각된 유용성이 이러닝 컨텐츠 구매의도에 미치는 영향: 구매경험에 의한 비교분석)

  • Yoo, Chul-Woo;Kim, Yang-Jin;Moon, Jung-Hoon;Choe, Young-Chan
    • Asia pacific journal of information systems
    • /
    • v.18 no.4
    • /
    • pp.105-130
    • /
    • 2008
  • Consumers of e-learning market differ from those of other markets in that they are replaced in a specific time scale. For example, e-learning contents aimed at highschool senior students cannot be consumed by a specific consumer over the designated period of time. Hence e-learning service providers need to attract new groups of students every year. Due to lack of information on products designed for continuously emerging consumers, the consumers face difficulties in making rational decisions in a short time period. Increased uncertainty of product purchase leads customers to herding behaviors to obtain information of the product from others and imitate them. Taking into consideration of these features of e-learning market, this study will focus on the online herding behavior in purchasing e-learning contents. There is no definite concept for e-learning. However, it is being discussed in a wide range of perspectives from educational engineering to management to e-business etc. Based upon the existing studies, we identify two main view-points regarding e-learning. The first defines e-learning as a concept that includes existing terminologies, such as CBT (Computer Based Training), WBT (Web Based Training), and IBT (Internet Based Training). In this view, e-learning utilizes IT in order to support professors and a part of or entire education systems. In the second perspective, e-learning is defined as the usage of Internet technology to deliver diverse intelligence and achievement enhancing solutions. In other words, only the educations that are done through the Internet and network can be classified as e-learning. We take the second definition of e-learning for our working definition. The main goal of this study is to investigate what factors affect consumer intention to purchase e-learning contents and to identify the differential impact of the factors between consumers with purchase experience and those without the experience. To accomplish the goal of this study, it focuses on herding behavior and perceived usefulness as antecedents to behavioral intention. The proposed research model in the study extends the Technology Acceptance Model by adding herding behavior and usability to take into account the unique characteristics of e-learning content market and e-learning systems use, respectively. The current study also includes consumer experience with e-learning content purchase because the previous experience is believed to affect purchasing intention when consumers buy experience goods or services. Previous studies on e-learning did not consider the characteristics of e-learning contents market and the differential impact of consumer experience on the relationship between the antecedents and behavioral intention, which is the target of this study. This study employs a survey method to empirically test the proposed research model. A survey questionnaire was developed and distributed to 629 informants. 528 responses were collected, which consist of potential customer group (n = 133) and experienced customer group (n = 395). The data were analyzed using PLS method, a structural equation modeling method. Overall, both herding behavior and perceived usefulness influence consumer intention to purchase e-learning contents. In detail, in the case of potential customer group, herding behavior has stronger effect on purchase intention than does perceived usefulness. However, in the case of shopping-experienced customer group, perceived usefulness has stronger effect than does herding behavior. In sum, the results of the analysis show that with regard to purchasing experience, perceived usefulness and herding behavior had differential effects upon the purchase of e-learning contents. As a follow-up analysis, the interaction effects of the number of purchase transaction and herding behavior/perceived usefulness on purchase intention were investigated. The results show that there are no interaction effects. This study contributes to the literature in a couple of ways. From a theoretical perspective, this study examined and showed evidence that the characteristics of e-learning market such as continuous renewal of consumers and thus high uncertainty and individual experiences are important factors to be considered when the purchase intention of e-learning content is studied. This study can be used as a basis for future studies on e-learning success. From a practical perspective, this study provides several important implications on what types of marketing strategies e-learning companies need to build. The bottom lines of these strategies include target group attraction, word-of-mouth management, enhancement of web site usability quality, etc. The limitations of this study are also discussed for future studies.

Design of Deep Learning-based Tourism Recommendation System Based on Perceived Value and Behavior in Intelligent Cloud Environment (지능형 클라우드 환경에서 지각된 가치 및 행동의도를 적용한 딥러닝 기반의 관광추천시스템 설계)

  • Moon, Seok-Jae;Yoo, Kyoung-Mi
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.473-483
    • /
    • 2020
  • This paper proposes a tourism recommendation system in intelligent cloud environment using information of tourist behavior applied with perceived value. This proposed system applied tourist information and empirical analysis information that reflected the perceptual value of tourists in their behavior to the tourism recommendation system using wide and deep learning technology. This proposal system was applied to the tourism recommendation system by collecting and analyzing various tourist information that can be collected and analyzing the values that tourists were usually aware of and the intentions of people's behavior. It provides empirical information by analyzing and mapping the association of tourism information, perceived value and behavior to tourism platforms in various fields that have been used. In addition, the tourism recommendation system using wide and deep learning technology, which can achieve both memorization and generalization in one model by learning linear model components and neural only components together, and the method of pipeline operation was presented. As a result of applying wide and deep learning model, the recommendation system presented in this paper showed that the app subscription rate on the visiting page of the tourism-related app store increased by 3.9% compared to the control group, and the other 1% group applied a model using only the same variables and only the deep side of the neural network structure, resulting in a 1% increase in subscription rate compared to the model using only the deep side. In addition, by measuring the area (AUC) below the receiver operating characteristic curve for the dataset, offline AUC was also derived that the wide-and-deep learning model was somewhat higher, but more influential in online traffic.

A MVC Framework for Visualizing Text Data (텍스트 데이터 시각화를 위한 MVC 프레임워크)

  • Choi, Kwang Sun;Jeong, Kyo Sung;Kim, Soo Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.39-58
    • /
    • 2014
  • As the importance of big data and related technologies continues to grow in the industry, it has become highlighted to visualize results of processing and analyzing big data. Visualization of data delivers people effectiveness and clarity for understanding the result of analyzing. By the way, visualization has a role as the GUI (Graphical User Interface) that supports communications between people and analysis systems. Usually to make development and maintenance easier, these GUI parts should be loosely coupled from the parts of processing and analyzing data. And also to implement a loosely coupled architecture, it is necessary to adopt design patterns such as MVC (Model-View-Controller) which is designed for minimizing coupling between UI part and data processing part. On the other hand, big data can be classified as structured data and unstructured data. The visualization of structured data is relatively easy to unstructured data. For all that, as it has been spread out that the people utilize and analyze unstructured data, they usually develop the visualization system only for each project to overcome the limitation traditional visualization system for structured data. Furthermore, for text data which covers a huge part of unstructured data, visualization of data is more difficult. It results from the complexity of technology for analyzing text data as like linguistic analysis, text mining, social network analysis, and so on. And also those technologies are not standardized. This situation makes it more difficult to reuse the visualization system of a project to other projects. We assume that the reason is lack of commonality design of visualization system considering to expanse it to other system. In our research, we suggest a common information model for visualizing text data and propose a comprehensive and reusable framework, TexVizu, for visualizing text data. At first, we survey representative researches in text visualization era. And also we identify common elements for text visualization and common patterns among various cases of its. And then we review and analyze elements and patterns with three different viewpoints as structural viewpoint, interactive viewpoint, and semantic viewpoint. And then we design an integrated model of text data which represent elements for visualization. The structural viewpoint is for identifying structural element from various text documents as like title, author, body, and so on. The interactive viewpoint is for identifying the types of relations and interactions between text documents as like post, comment, reply and so on. The semantic viewpoint is for identifying semantic elements which extracted from analyzing text data linguistically and are represented as tags for classifying types of entity as like people, place or location, time, event and so on. After then we extract and choose common requirements for visualizing text data. The requirements are categorized as four types which are structure information, content information, relation information, trend information. Each type of requirements comprised with required visualization techniques, data and goal (what to know). These requirements are common and key requirement for design a framework which keep that a visualization system are loosely coupled from data processing or analyzing system. Finally we designed a common text visualization framework, TexVizu which is reusable and expansible for various visualization projects by collaborating with various Text Data Loader and Analytical Text Data Visualizer via common interfaces as like ITextDataLoader and IATDProvider. And also TexVisu is comprised with Analytical Text Data Model, Analytical Text Data Storage and Analytical Text Data Controller. In this framework, external components are the specifications of required interfaces for collaborating with this framework. As an experiment, we also adopt this framework into two text visualization systems as like a social opinion mining system and an online news analysis system.

The Effect of the Subjective Wellbeing on the Addiction and Usage Motivation of Social Networking Services: Moderating Effect of Social Tie (SNS 이용동기와 SNS 중독이 주관적 웰빙에 미치는 영향: 사회적 유대감의 조절효과)

  • Noh, Mi-Jin;Jang, Sung-Hee
    • Management & Information Systems Review
    • /
    • v.35 no.4
    • /
    • pp.99-122
    • /
    • 2016
  • The social networking services (SNSs) have become popular among smartphone users, and one of the most popular services. In order to explain users' motivations toward SNS, this study considers uses and gratification theory which can explain individuals' motivations to select certain media channels. The purposes of this study is to investigate the relationships between motivations and addiction of SNS, and between addiction of SNS and decline in the subjective wellbeing. We examine moderating effects of social tie based on the social capital theory in the relationships between SNS addiction and decline in the subjective wellbeing. The motivations of SNS are subdivided into emotional motive (entertainment and fantasy) and cognitive motive (information share burden and challenge burden) based on the use and gratifications theory. The addiction of SNS is subdivided into time tolerance, withdrawal symptoms, interruption, and barrier of living. The data used in this study were collected from 286 SNS users through surveys. The data analysis in this study was performed using AMOS 17.0, and we used SEM(Structural Equation Modeling) methods in order to test the research model. The result shows that the emotional motive(entertainment and fantasy) and cognitive motive(information share burden and challenge burden) have an effect on the addiction of SNS. Especially emotional motive such as entertainment and users' fantasy toward SNS is an important factor that can cause SNS addiction. The addiction of SNS such as time tolerance, withdrawal symptoms, interruption, and barrier of living has an effect on the decline in the subjective wellbeing. Our result show that social tie partially moderates the relationship SNS addiction and decline in the subjective wellbeing. In addition, social tie between interruption of SNS and decline in the subjective wellbeing is an important moderating factor. The results focuses on the understanding toward relationship between SNS addiction based on the online and decline in the subjective wellbeing in the real world. The findings of this study also provides theoretical as well as practical implications which reflect the major features of SNS, and moderating effects of social tie based on the social capital.

  • PDF

Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System (추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법)

  • Lee, O-Joun;You, Eun-Soon
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.119-142
    • /
    • 2015
  • With the explosive growth in the volume of information, Internet users are experiencing considerable difficulties in obtaining necessary information online. Against this backdrop, ever-greater importance is being placed on a recommender system that provides information catered to user preferences and tastes in an attempt to address issues associated with information overload. To this end, a number of techniques have been proposed, including content-based filtering (CBF), demographic filtering (DF) and collaborative filtering (CF). Among them, CBF and DF require external information and thus cannot be applied to a variety of domains. CF, on the other hand, is widely used since it is relatively free from the domain constraint. The CF technique is broadly classified into memory-based CF, model-based CF and hybrid CF. Model-based CF addresses the drawbacks of CF by considering the Bayesian model, clustering model or dependency network model. This filtering technique not only improves the sparsity and scalability issues but also boosts predictive performance. However, it involves expensive model-building and results in a tradeoff between performance and scalability. Such tradeoff is attributed to reduced coverage, which is a type of sparsity issues. In addition, expensive model-building may lead to performance instability since changes in the domain environment cannot be immediately incorporated into the model due to high costs involved. Cumulative changes in the domain environment that have failed to be reflected eventually undermine system performance. This study incorporates the Markov model of transition probabilities and the concept of fuzzy clustering with CBCF to propose predictive clustering-based CF (PCCF) that solves the issues of reduced coverage and of unstable performance. The method improves performance instability by tracking the changes in user preferences and bridging the gap between the static model and dynamic users. Furthermore, the issue of reduced coverage also improves by expanding the coverage based on transition probabilities and clustering probabilities. The proposed method consists of four processes. First, user preferences are normalized in preference clustering. Second, changes in user preferences are detected from review score entries during preference transition detection. Third, user propensities are normalized using patterns of changes (propensities) in user preferences in propensity clustering. Lastly, the preference prediction model is developed to predict user preferences for items during preference prediction. The proposed method has been validated by testing the robustness of performance instability and scalability-performance tradeoff. The initial test compared and analyzed the performance of individual recommender systems each enabled by IBCF, CBCF, ICFEC and PCCF under an environment where data sparsity had been minimized. The following test adjusted the optimal number of clusters in CBCF, ICFEC and PCCF for a comparative analysis of subsequent changes in the system performance. The test results revealed that the suggested method produced insignificant improvement in performance in comparison with the existing techniques. In addition, it failed to achieve significant improvement in the standard deviation that indicates the degree of data fluctuation. Notwithstanding, it resulted in marked improvement over the existing techniques in terms of range that indicates the level of performance fluctuation. The level of performance fluctuation before and after the model generation improved by 51.31% in the initial test. Then in the following test, there has been 36.05% improvement in the level of performance fluctuation driven by the changes in the number of clusters. This signifies that the proposed method, despite the slight performance improvement, clearly offers better performance stability compared to the existing techniques. Further research on this study will be directed toward enhancing the recommendation performance that failed to demonstrate significant improvement over the existing techniques. The future research will consider the introduction of a high-dimensional parameter-free clustering algorithm or deep learning-based model in order to improve performance in recommendations.

The Relationship of Covert Narcissism, Sense of Alienation, and Self-Esteem with SNS Addiction Proneness in Middle School Students (중학생의 SNS중독 경향성에 있어 내현적 자기애와 소외감, 자아존중감의 관계)

  • Cho, So Yeon;Jung, Joowon
    • Journal of Korean Home Economics Education Association
    • /
    • v.29 no.3
    • /
    • pp.125-140
    • /
    • 2017
  • The purpose of this study was to investigate the relationship of covert narcissism and the sense of alienation with SNS addiction proneness and the influence of them on SNS addiction proneness in order to find a way to conduct an intervention for the SNS addiction proneness of middle school students, and verify the mediating effect of self-esteem on the relationship between covert narcissism, the sense of alienation, and SNS addiction proneness. For this purpose, data were collected online from the first to third grade middle school students who had the experience of using SNS within the past one week, and finally, the data of a total of 341 participants were used for analysis. First, as a result of the analysis of the correlation between covert narcissism, the sense of alienation, self-esteem and SNS addiction proneness, covert narcissism and the sense of alienation showed a significant positive correlation with SNS addiction proneness. On the other hand, there was a significant negative correlation between self-esteem and SNS addiction proneness. Second, the investigation of the effects of covert narcissism, alienation, and self-esteem on SNS addiction proneness showed that covert narcissism, the sense of alienation, and self-esteem had a significant effect on the SNS addiction proneness. The higher the levels of covert narcissism and the sense of alienation, the higher the level of SNS addiction proneness. On the other hand, the higher the level of self-esteem, the lower the level of SNS addiction proneness. Third, the mediating effect of self-esteem was verified for the relationship of covert narcissism and the sense of alienation with SNS addiction proneness. Although covert narcissism and the sense of alienation may directly affect SNS addiction proneness, it was found that they had a significant effect on the SNS addiction proneness through self-esteem as a mediating variable. In other words, it was found that as the levels of the covert narcissism and the sense of alienation were increased, the level of the self-esteem was lowered, which led to a higher level of SNS addiction proneness. In order to form a proper network culture for adolescents, education on appropriate use of SNS that can be put into practice in everyday life should be conducted, and healthy and desirable SNS culture should be created. In addition, systematic education and management should be provided so that students can develop the ability to control and regulate themselves.

A Study on the Restructuration of Norm System in the Field of ICT for the Smart Media (Smart미디어시대 정보통신·미디어(ICT) 분야 규범체계의 재구조화에 관한 연구)

  • Ji, Seong-Woo
    • Journal of Legislation Research
    • /
    • no.44
    • /
    • pp.33-62
    • /
    • 2013
  • In this paper, the consolidation of ICT basic legislation and ICT special legislation concerning "Ministry of Science, ICT and Future Planning" and "Korea Communications Commission" which came on the back of governmental reorganization in recent years is discussed in the theoretical and practical aspect. Development of "data communication technology" innovatively changed the method of livelihood of mankind, the emergence of network under global dimension provided financial social benefit and posed a challenge and a threat at the same time. Form digital revolution human kind can expect to receive many important blessings. Nevertheless, there are many advantages of development of technology by digital revolution, cyberspace like online media, internet etc. has realistically many problems that must be solved. To maximum positive aspects like the expansion of freedom of expression and creating plan of economy by the advance of transmission technology is needed. And to minimize side effects of informatization is required more. The First, Special Act on ICT has an adaptation in normative standardization to be fit in media convergence beyond convergence of broadcasting and telecommunications. Henceforth, there must be established a legal basis for the achievement of protection of economic evolution and freedom of speech in digital media, information, communication technology and content development. The second, the government action is to accomplish economic development and freedom of information in structural aspect of norm. Therefore minimizing normative problem by reorganization of organization remains clearly unresolved in politics. The third, Special Act on ICT must be basic law covering info-communications field, pay telecommunication and media contents field. The forth, from a technical point of view, net neutrality, conflict of interest for digital content and so on can be fixed easily. Special Act on ICT must not only pursuit of development of industry. Special Act on ICT and pursuit of enhancing quality of life of people and preparing program to promote democratization. From now on, we need to make powerful nation of information& communications technology and in information human rights protection field got to be one step ahead of others with reference to appear all the various aspects must be brought together in the discussion of legislation process of Special Act on ICT.

A Study on Perception Change in Bicycle users' Outdoor Activity by Particulate Matter: Based on the Social Network Analysis (미세먼지로 인한 자전거 이용객의 야외활동 인식변화에 관한 연구: 사회네트워크분석을 중심으로)

  • Kim, Bomi;Lee, Dong Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.5
    • /
    • pp.440-456
    • /
    • 2019
  • The controversy of the risk perception related to particulate matters becomes significant. Therefore, in order to understand the nature of the particulate matters, we gathered articles and comments in on-line community related to bicycling which is affected by exposure of the particulate matters. As a result, firstly, the government - led particulate matter policy was strengthened and segmented every period, butthe risk perception related to particulate matters in the bicycle community has become active and serious. Second, as a result of analyzing the perception change of outdoor activities related to particulate matters, bicycle users in community showed a tendency of outdoor activity depending on the degree of particulate matters ratherthan the weather. In addition, the level of the risk perception related to particulate matters has been moved from fears of serious threat in daily life and health, combined with the disregard of domestic particulate matter levels or mask performance. Ultimately, these risk perception related to particulate matters have led some of the bicycling that were mainly enjoyed outdoors to the indoor space. However, in comparison with outdoor bicycling enjoyed by various factors such as scenery, people, and weather, the monotonous indoor bicycling was converted into another type of indoor exercise such as fitness and yoga. In summary, it was derived from mistrust of excessive information or policy provided by the government or local governments. It is considered that environmental policy should be implemented after discussion of risk communication that can reduce the gap between public anxiety and concern so as to cope with the risk perception related to particulate matters. Therefore,this study should be provided as an academic basis for the effective communication direction when decision makers establish the policy related to particulate matters.