• Title/Summary/Keyword: Oneplant

Search Result 8, Processing Time 0.027 seconds

THREE-DIMENSIONAL STRESS ANALYSIS OF IMPLANT SYSTEMS IN THE MANDIBULAR BONE WITH VARIOUS ABUTMENT TYPES AND LOADING CONDITIONS (임프란트의 상부구조물 형상과 하중조건에 따른 3차원 유한요소해석을 이용한 하악골의 응력분포에 관한 연구)

  • Shin Ha-Shik;Chun Heoung-Jae;Han Chong-Hyun;Lee Soo-Hong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.617-625
    • /
    • 2003
  • Statement of problem : There are many studies focused on the effect of shape of futures on stress distribution in the mandibular bone. However, there are no studies focused on the effect of the abutment types on stress distribution in mandibular bone. Purpose : The purpose of this study is to investigate the effect of three different abutment types on the stress distributions in the mandibular bone due to various loads by performing finite element analysis. Material and method : Three different implant systems produced by Warantec (Seoul, Korea), were modeled to study the effect of abutment types on the stress distribution in the mandibular bone. The three implant systems are classified into oneplant (Oneplant, OP-TH-S11.5). internal implant (Inplant, IO-S11.5) and external implant (Hexplant, EH-S11.5). All abutments were made of titanium grade ELI. and all fixtures were made of titanium grade IV. The mandibular bone used in this study is constituted of compact and spongeous bone assumed to be homogeneous, isotropic and linearly elastic. A comparative study of stress distributions in the mandibular bone with three different types of abutment was conducted. Results : It was found that the types of abutments have significant influence on the stress distribution in the mandibular bone. It was due to difference in the load transfer mechanism and the size of contact area between abutment and fixture. Also the maximum effective stress in the mandibular bone was increased with the increase of inclination angle of load. Conclusion : It was concluded that the maximum effective stress in the bone by the internal implant was the lowest among the maximum effective stresses by other two types.

EFFECT OF IMPLANT DESIGNS ON INSERTION TORQUE AND IMPLANT STABILITY QUOTIENT (ISQ) VALUE

  • Piao Chun-Mei;Heo Seong-Joo;Koak Jai-Young;Kim Seong-Kyun;Han Chong-Hyun;Fang Xian-Hao
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.325-332
    • /
    • 2006
  • Statement of problem. Primary implant stability has long been identified as a prerequisite to achieve osseointegration. So the application of a simple, clinically applicable noninvasive test to assess implant stability and osseiointegratation are considered highly desirable. Purpose. The purpose of this study was to evaluate the ISQ value and the insertion torque of the 3 different implant system, then to evaluate whether there was a correlation between ISQ value and insertion torque; and to determine whether implant design has an influence on either insertion torque or ISQ value. Material and method. The experiment was composed of 3 groups: depending on the implant fixture design. Group1 was Branemark type parallel implant in $3.75{\times}7mm$. Group2 was Oneplant type straight implant in $4.3{\times}8.5mm$. Group3 was Oneplant type tapered implant in $4.3{\times}8.5mm$. Depending on the density of the bone, 2 types of bone were used in this experiment. Type I bone represented for cortical bone, type II bone represented for cancellous bone. With the insertion of the implant in type I and type II bone, the insertion torque was measured, then the ISQ value was evaluated, and then the correlation between insertion torque and ISQ value was analyzed Result and conclusion. Within the limitations of this study, the following conclusions were drawn. 1. Within the 3 different implants, the insertion torque value and ISQ value were higher in type I bone, when compared with type II bone.(p<0.05) 2. In type I and type II bone, Oneplant type tapered implant has the highest value in insertion torque.(p<0.05) 3. In type I and type II bone, there was no difference in ISQ values among the 3 types of implant. (p>0.05) 4. Significant linear correlation was found in $Br{\aa}nemark$ type parallel implant: $3.75{\times}7mm$ in type II bone.

Three-dimensional Stress Analysis of Implant Systems with Micro Threads in the Maxillary Bone (다양한 마이크로쓰레드(Micro thread)의 개수를 가지는 임플란트의 상부구조물 형상과 하중조건에 따른 3차원 유한요소해석을 이용한 하악골의 응력분포에 관한 연구)

  • Shin Ha-Shik;Han Chong-Hyun;Lee Soo-Hong;Chun Heoung-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.179-186
    • /
    • 2005
  • A comparative study of stress distributions in the maxillary bone with three different types of abutment was conducted. Finite element analysis was adopted to determine stress generated in the bone with the different implant systems with micro threads (Onebody type implant, Internal type implant, and External type implant). It was found that the types of abutments and the number of micro threads have significant influence on the stress distribution in the maxillary bone. They were due to the difference in the load transfer mechanism and the size of contact area between abutment and fixture. Also the maximum effective stress in the maxillary bone was increased with increasing inclination angle of load. It was concluded that the maximum effective stress in the bone was the lowest by the internal implant among the maximum effective stresses by other two types of implants and by appropriate number of micro threads, and that the specific number of micro thread was existed to decrease the maximum effective stress in the maxillary bone due to different implant systems and loading conditions.

INFLUENCE OF IMPLANT FIXTURE DESIGN ON IMPLANT PRIMARY STABILITY (임플랜트 고정체의 형태가 임플랜트 초기안정성에 미치는 영향)

  • Oh, Gap-Yong;Park, Sung-Hwa;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.98-106
    • /
    • 2007
  • Statement of problem: Current tendencies of the implant macrodesign are tapered shapes for improved primary stability, but there are lack of studies regarding the relationship between the implant macrodesign and primary stability. Purpose: The purpose is to investigate the effect of implant macrodesign on the implant primary stability by way of resonance frequency analysis in the bovine rib bones with different kinds of quality. Material and method: Fifty implants of 6 different kinds from two Korean implant systems were used for the test. Bovine rib bones were cut into one hundred pieces with the length of 5 cm. Among them forty pieces of rib bones with similar qualities were again selected. For the experimental group 1, the thickness of cortical part was measured and 20 pieces of rib bones with the mean thickness of 1.0mm were selected for implant placement. For the experimental group 2, the cortical parts of the remaining 20 pieces of rib bones were totally removed and then implants were placed on the pure cancellous bone according to the surgical manual. After placement of all implants, the implant stability quotient(ISQ) was measured by three times, and its statistical analysis was done. Results: There are statistically significant differences in ISQ values among 4 different kinds of Avana system implants in the experimental group 2. For the experimental group 1, Avana system implants showed significantly different ISQ values, but when differences in the thickness of cortical parts were statistically considered, did not show any significant differences in ISQ values. Among Oneplant system implants, there are no significant differences in ISQ values for the experimental group 2 as well as for the experimental group 1. Conclusion: Within the limits of this study, bone quality and implant design have some influences on the primary stability of implants. Especially in the bone of poor quality, tapered shape of implants are more favorable for the primary stability of implants.

AN OPTIMIZATION OF ONEBODY TYPE IMPLANT SYSTEM CONSIDERING VARIOUS DESIGN PARAMETERS (다양한 설계변수를 고려한 수직하중을 받는 일체형 임플랜트의 최적설계)

  • Choi Jae-Min;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.185-196
    • /
    • 2006
  • Statement of problem: The researches on the influence of design variables on the stress distribution in cortical and trabecular bones and on optimal design for implant system were limited. Purpose: The purpose of this study is to identify the sensitivities of design parameters and to suggest the optimal parameters for designing the onebody type implant system. Material and methods: Stresses arising in the implant system were obtained by finite element analysis using a three dimensional model. An onebody type implant system[Oneplant (Warrantec. Co. Ltd., Korea)] was considered in this study. Vortical load(150 N) was applied on the top of the abutment along the axial direction. The initial design variables set for sensitivity analysis were radius of fixture, numbers of micro thread, numbers of power thread, height of micro thread, future length, tapered angle of future, inclined angle of thread, width of micro thread and width of power thread. The statistical technique of Design of Experiments(DOE) was applied tn the simulation model to deduce effective design parameters on stress distributions in bones. The deduced design parameters were incorporated into a fully automated design tool which is coupled with the finite element analysis and numerical optimization to determine the optimal design parameters. Results: 1. The result of sensitivity analysis showed six design variables - radius of future, tapered angle of fixture, inclined angle of thread, numbers of power thread, numbers of micro thread and height of micro thread - were more influential than the others. 2. The optimal values of design variables can be deduced by coupling finite element analysis (FEA) and design optimization tool(DOT).

The cumulative survival rate of dental implants with micro-threads: a long-term retrospective study

  • Dong-Hui Nam;Pil-Jong Kim;Ki-Tae Koo;Yang-Jo Seol;Yong-Moo Lee;Young Ku;In-Chul Rhyu;Sungtae Kim;Young-Dan Cho
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • Purpose: This study aimed to evaluate the long-term cumulative survival rate (CSR) of dental implants with micro-threads in the neck over a 10-year follow-up period and to examine the factors influencing the survival rate of dental implants. Methods: This retrospective study was based on radiographic and dental records. In total, 151 patients received 490 Oneplant® dental implants with an implant neck micro-thread design during 2006-2010 in the Department of Periodontology of Seoul National University Dental Hospital. Implant survival was evaluated using Kaplan-Meier analysis. Cox proportional hazard regression analysis was used to identify the factors influencing implant failure. Results: Ten out of 490 implants (2.04%) failed due to fixture fracture. The CSR of the implants was 97.9%, and no significant difference was observed in the CSR between external-and internal-implant types (98.2% and 97.6%, respectively, P=0.670). In Cox regression analysis, 2-stage surgery significantly increased the risk of implant failure (hazard ratio: 4.769, P=0.039). There were no significant differences in influencing factors, including sex, age, implant diameter, length, fixture type, location, surgical procedure, bone grafting, and restoration type. Conclusions: Within the limitations of this retrospective study, the micro-thread design of the implant neck was found to be favorable for implant survival, with stable clinical outcomes.

Radiographic evaluation of marginal bone resorption around two types of external hex implants : preliminary study (두 종의 external hex implant의 변연골 흡수에 관한 연구 : 예비연구 (preliminary study))

  • Lee, Ji-Eun;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun;Han, Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.169-174
    • /
    • 2008
  • Statement of problem: Changes of the marginal bone around dental implants have significance not only for the functional maintenance but also for the esthetic success of the implant. It was proposed that bone-retention elements such as microthreads at the coronal part of implant might help maintain the marginal bone level. Purpose: This study was designed to evaluate the effect of microthread configuration within the marginal coronal portion of the implant fixture at the marginal bone changes after loading around two different external hex implants. Material and methods: Twenty-four patients were included and randomly assigned to treatment with $Br{{\aa}}nemark$ system implants (Group 1, rough-surfaced implants, n=20) and Oneplant system implants (Group 2, rough-surfaced neck with microthreads, n=20). Clinical and radiographic examinations were conducted at baseline (implant loading) and 1 year postloading. Data analysis was performed by the SAS statistical package version 9.1.3 (SAS Institute, Cary, NC, USA) and the final model was calculated by the MIXED procedure (three-level ANCOVA) for marginal bone change of each test group at baseline and 1 year follow-up. Results: Comparing to baseline, significant differences were noted in marginal bone level changes for the 2 groups at 1 year follow-up (P<0.05). Group 1 had a mean crestal bone level changes of $0.83{\pm}0.31mm$; Group 2 had a mean crestal bone level changes of $0.44{\pm}0.36mm$. Rough-surfaced with microthreads implants showed significantly less marginal bone loss than rough surfaced neck without microthread implants. Conclusion: A rough surface with microthreads at the implant was beneficial design to maintain the marginal bone level against functional loading.