• Title/Summary/Keyword: One-dimensional nanostructure

Search Result 28, Processing Time 0.027 seconds

Fabrication of ZnO/TiO2 Nanoheterostructure and Its Application to Photoelectrochemical Cell

  • Song, Hong-Seon;Kim, Hui-Jin;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.459.1-459.1
    • /
    • 2014
  • Because both $TiO_2$ and ZnO has superior characteristic optically and electrically, there are various of research for these materials. However, they have large band gap energy which correspond with not visible light, but UV light. To make up for this disadvantage, Quantum dots (CdS, CdSe) which can absorb the visible light could be deposited on $ZnO/TiO_2$ nanostructure so that the the photoelectrochecmical cell can absorb the light that has larger region of wavelength. Both $TiO_2$ and ZnO can be grown to one-dimensional nanowire structure at low temperature through solutional method. Three-dimensional hierarcical $ZnO/TiO_2$ nanostructure is fabricated by applying these process. Large surface area of this structure make the light absorbed more efficiently. Through type 2 like-cascade energy band structure of nanostructure, the efficient separation of electron-hole pairs is expected. Photoelectrochemical charateristics are found by using these nanostructure to photoelectrode.

  • PDF

Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy (주사탐침열파현미경을 이용한 1 차원 나노구조체의 정량적 열전도도 계측기법)

  • Park, Kyung Bae;Chung, Jae Hun;Hwang, Gwang Seok;Jung, Eui Han;Kwon, Oh Myoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.957-962
    • /
    • 2014
  • We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

Ab initio calculation of half-metallic ferrocene-based nanowire

  • Kim, Seongmin;Park, Changhwi
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.425-429
    • /
    • 2014
  • Half-metallic nanostructure is highly applicable in the field of Spintronics and electronic device technology. We examine the electronic properties of a ferrocene-based nanowire as a possible candidate for a half-metallic nanostructure using VASP and SIESTA. Ferrocene-based nanowire shows high stability in both binding energy simulation and molecular dynamics (MD) simulation. The density of states (DOS) and the projected DOS of the ferrocene-based nanowire indicate that one-dimensional clustering of ferrocene molecules can be explained because of p-d orbital hybridization between iron and carbon. Half-metallic property and energy dispersion at the Fermi level due to one-dimensional structure is also observed from the DOS results.

  • PDF

Synthesis and Characterization of One-Dimensional GaN Nanostructures Prepared via Halide Vapor-Phase Epitaxy

  • Byeun, Yun-Ki;Choi, Do-Mun;Han, Kyong-Sop;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.142-146
    • /
    • 2007
  • High-quality one-dimensional GaN nanorods and nanowires were synthesized on Ni-coated c-plan sapphire substrate using halide vapor-phase epitaxy (HVPE). Their structure and optical properties were investigated by X-ray diffraction, scanning and transmission electron microscopy, and photoluminescence techniques. Full substrate coverage of densely packed, uniform, straight and aligned one-dimensional GaN nanowires with a diameter of 80nm were grown at $700{\sim}900^{\circ}C$. The X-ray diffraction patterns, transmission electron microscopic image, and selective area electron diffraction patterns indicate that the one-dimensional GaN nanostructures are a pure single crystalline and preferentially oriented in the [001] direction. We observed high optical quality of GaN nanowires by photoluminescence analysis.

Enhancement of Electrochemical and Mechanical Properties of 3D Graphene Nanostructures by Dopamine-coating (도파민 코팅을 이용한 3차원 그래핀 나노 구조체의 전기화학적/기계적 특성 향상 연구)

  • Lee, Guk Hwan;Luan, Van Hoang;Han, Jong Hun;Kang, Hyun Wook;Lee, Wonoh
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.388-394
    • /
    • 2019
  • Inherited the excellent electrical and mechanical properties based on the low dimensional structure of graphene, three-dimensional graphene nanostructures have gathered great attention as electrochemical energy storage electrodes owing to their high porosity and large specific surface area. Also, having the catecholamine structure, dopamine has been regarded as a multifunctional material to possess high affinity to various organic/inorganic materials and to modify a hydrophobic surface to a hydrophilic one. In this work, through coating dopamine on the three-dimensional graphene nanostructure, we tried to increase the specific capacitance by enhancing the wettability with electrolyte and to improve the mechanical compressive property by strengthening the nano-architecture. As a result, the dopamine-coated nanostructure exhibited significant improvement on the specific capacitance (51.5% increase) and compressive stress (59.6% increase).

Simple Preparation of One-dimensional Metal Selenide Nanomaterials Using Anodic Aluminum Oxide Template

  • Piao, Yuanzhe
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • Highly ordered and perforated anodic aluminum oxide membranes were prepared by anodic oxidation and subsequent removal of the barrier layer. By using these homemade anodic aluminum oxide membranes as templates, metal selenide nanowires and nanotubes were synthesized. The structure and composition of these one-dimensional nanomaterials were studied by field emission scanning electron microscopy as well as transmission electron microscopy and energy dispersive X-ray spectroscopy. The growth process of metal selenide inside anodic aluminum oxide channel was traced by investigating the series of samples using scanning electron microscopy after reacting for different times. Straight and dense copper selenide and silver selenide nanowires with a uniform diameter were successfully prepared. In case of nickel selenide, nanotubes were preferentially formed. Phase and crystallinity of the nanostructured materials were also investigated.

Chemiresistive Sensor Based on One-Dimensional WO3 Nanostructures as Non-Invasive Disease Monitors

  • Moon, Hi Gyu;Han, Soo Deok;Kim, Chulki;Park, Hyung-Ho;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.291-294
    • /
    • 2014
  • In this study, a chemiresistive sensor based on one-dimensional $WO_3$ nanostructures is presented for application in non-invasive medical diagnostics. $WO_3$ nanostructures were used as an active gas sensing layer and were deposited onto a $SiO_2/Si$substrate using Pt interdigitated electrodes (IDEs). The IDE spacing was $5{\mu}m$ and deposition was performed using RF sputter with glancing angle deposition mode. Pt IDEs fabricated by photolithography and dry etching. In comparison with thin film sensor, sensing performance of nanostructure sensor showed an enhanced response of more than 20 times when exposed to 50 ppm acetone at $400^{\circ}C$. Such a remarkable faster response can pave the way for a new generation of exhaled breath analyzers based on chemiresistive sensors which are less expensive, more reliable, and less complicated to be manufactured. Moreover, presented sensor technology has the potential of being used as a personalized medical diagnostics tool in the near future.

One-Dimensional Core/Shell Structured TiO2/ZnO Heterojunction for Improved Photoelectrochemical Performance

  • Ji, In-Ae;Park, Min-Joon;Jung, Jin-Young;Choi, Mi-Jin;Lee, Yong-Woo;Lee, Jung-Ho;Bang, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2200-2206
    • /
    • 2012
  • One-dimensional $TiO_2$ array grown on optically transparent electrode holds a promise as a photoelectrode for photoelectrochemical water splitting; however, its crystal structure is rutile, imposing constraints on the potent use of this nanostructure. To address this issue, a heterojunction with type-II band alignment was fabricated using atomic layer deposition (ALD) technique. One-dimensional core/shell structured $TiO_2$/ZnO heterojunction was superior to $TiO_2$ in the photoelectrochemical water splitting because of better charge separation and more favorable Fermi level. The heterojunction also possesses better light scattering property, which turned out to be beneficial even for improving the photoelectrochemical performance of semiconductor-sensitized solar cell.

Electrospinning Technology for Novel Energy Conversion & Storage Materials

  • Jo, Seong-Mu;Kim, Dong-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Electrospinning has known to be very effective tool for production of versatile one-dimensional (1D) nanostructured materials such as nanofibers, nanorod, and nanotubes and for easily assembly to two-, three-dimensional(2D, 3D) nanostructures such as thin film, membrane, and nonwoven web, etc. We have studied on the electrospinning technology for novel energy storage and conversion materials such as advanced separator, dye sensitized solar cell, supercapacitor, etc. High heat-resistive nanofibrous membrane as a new separator for future lithium ion polymer battery was prepared by electrospinning of PVdF based composite solution. The novel nanofibrous composite nonwovens have tensile strength of above 50 MPa and modulus of above 1.3 GPa. The internal structure of the electrospun composite nanofiber with a diameter of few hundreds nanometer were composed of core-shell nanostructure. And also electrospun $TiO_2$ nanorod/nanosphere based dye-sensitized solar cells with high efficiency are successfully prepared. Some battery performance will be introduced.

  • PDF

Large Area Nanostructure Fabrication by Laser Interference Lithography (레이저 간섭 리소그래피를 이용한 대면적 나노 구조체 제작)

  • Jeong, Il Gyu;Kim, Jongseok;Hahn, Jae Won;Lee, Sung Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.7-11
    • /
    • 2012
  • One dimensional and two dimensional nano patterns were fabricated on a 4-inch substrate by Laser Interference Lithography (LIL). Mach-Zehnder interferometer was setup to obtain the interference patterns and adjusted the pattern sizes with change of incident angle. We could obtain a periodic structure with a period of 440 nm using 266 nm laser, and demonstrated a pattern size with $293{\pm}25nm$ over a 4-inch substrate.