• 제목/요약/키워드: One-dimensional Simulation

검색결과 915건 처리시간 0.029초

전자제어분사 방식 소형엔진의 1차원 성능 모델 개발 (One Dimensional Simulation Model Development of the EFI Small Engine)

  • 염경민;박성영
    • 한국산학기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.1502-1508
    • /
    • 2011
  • 본 연구에서는 전자제어 분사방식 소형엔진의 모델을 개발하기 위하여 기존 소형엔진의 제원을 바탕으로 1차원 모델을 구성하였다. 새롭게 구성된 모델의 성능해석을 수행하고 이를 실험결과와 분석하여 모델의 타당성을 확인하였다. 1차원 성능 모델의 토크 및 출력 해석결과는 실험결과와 3%이내의 오차를 보였으며, 소형엔진의 토크 및 출력 특성을 우수하게 예측하고 있다. 소형 엔진의 성능향상을 위해 엔진의 흡입성능에 미치는 성능인자의 영향력을 분석하였다.

Simulation of Moving Storm in a Watershed Using Distributed Models

  • Choi, Gye-Woon;Lee, Hee-Seung;Ahn, Sang-Jin
    • Korean Journal of Hydrosciences
    • /
    • 제5권
    • /
    • pp.1-16
    • /
    • 1994
  • In this paper distributed models for simulating spatially and temporally varied moving storm in a watershed were developed. The complete simulation in a watershed is achieved through two sequential flow simulations which are overland flow simulation and channel network flow simulation. Two dimensional continuity equation and momentum equation of kinematic approximation were used in the overland flow simulation. On the other hand, in the channel network simulation two types of governing equations which are one dimensional continuity and momentum equations between two adjacent sections in a channel, and continuity and energy equations at a channel junction were applied. The finite difference formulations were used in the channel network model. Macks Creek Experimental Watershed in Idaho, USA was selected as a target watershed and the moving storm on August 23, 1965, which continued from 3:30 P.M. to 5:30 P.M., was utilized. The rainfall intensity fo the moving storm in the watershed was temporally varied and the storm was continuously moved from one place to the other place in a watershed. Furthermore, runoff parameters, which are soil types, vegetation coverages, overland plane slopes, channel bed slopes and so on, are spatially varied. The good agreement between the hydrograph simulated using distributed models and the hydrograph observed by ARS are Shown. Also, the conservations of mass between upstreams and downstreams at channel junctions are well indicated and the wpatial and temporal vaiability in a watershed is well simulated using suggested distributed models.

  • PDF

Kerr Medium에서의 단독 빔의 간섭에 관한 시뮬레이션 (Simulation of Solitary Beam Interaction in Kerr Media)

  • 심형관
    • 한국시뮬레이션학회논문지
    • /
    • 제12권2호
    • /
    • pp.75-89
    • /
    • 2003
  • This paper describe numerical experiments with solitary beams in a self focusing Kerr medium with fast response. Through formal analogies, it compare this results on the phase sensitivity of beam collision with known predictions about one dimensional soliton interaction. For incoherent oblique beam interaction, there occurs a non-periodic coupled-mode type transfer of energy, resulting in complete transmission each beam through the other one.

  • PDF

유한요소법을 이용한 복합재 구조물의 3차원 경화 수치모사 (Three-dimensional cure simulation of composite structures by the finite element method)

  • 민경재;박훈철;윤광준
    • 한국항공우주학회지
    • /
    • 제30권6호
    • /
    • pp.39-45
    • /
    • 2002
  • 본 논문에서는 복합재의 3차원 경화 수치모사를 위해 유한요소 정식과정을 제시하였다. 이 정식을 기초로 하여 유한요소 프로그램을 개발하였다. 개발한 프로그램을 검증하기 위해 참고문헌에 제시된 수치예제에 대한 해석을 수행하였다. 본 논문에서의 경화 수치모사결과가 측정된 경화온도와 잘 일치하였다. 본 3차원 경화 수치모사에서는 1, 2차원 해석과는 달리 복합재 구조물의 임의 지점에서의 수치모사 결과분석이 가능하다. 개발된 유한요소 프로그램을 이용하면 불규칙한 형상을 가진 복합재 구조물과 일정하지 않은 오토클레이브 내부 온도분포 하에서의 경화 수치모사를 할 수 있다.

Three-dimensional Self-consistent Particle-in-cell and Monte Carlo Collisional Simulation of DC Magnetron Discharges

  • Kim, Seong-Bong;Chang, Hyon-U;Yoo, Suk-Jae;Oh, Ji-Young;Park, Jang-Sik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.526-526
    • /
    • 2012
  • DC magnetron discharges were studied using three-dimensional self-consistent particle-in-cell and Monte Carlo collisional (PIC-MCC) simulation codes. Two rectangular sputter sources (120 mm * 250 mm and 380 mm * 200 mm target sizes) were used in the simulation modeling. The number of incident ions to the Cu target as a function of position and simulation time was obtained. The target erosion profile was calculated by using the incident ions and the sputtering yields of the Cu target calculated with SRIM codes. The maximum ion density of the ion density distribution in the discharge was about $10^{10}cm^{-3}$ due to the calculation speed limit. The result may be less than one or two order of magnitude smaller than the real maximum ion density. However, the target erosion profiles of the two sputter sources were in good agreement with the measured target erosion profiles except for the erosion profile near the target surface, in which which the measured erosion width was broader than the simulation erosion width.

  • PDF

원웨이 클러치 베어링 외륜의 열간과 냉간 복합단조 공정 기술 개발 (Development of Hot and Cold Combined Forging Process for a One-Way Clutch Bearing Outer Race)

  • 장수진;전병윤;장성민;전만수;문호근;성현석;허민호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.441-444
    • /
    • 2009
  • In this research, a hot and cold combined forging process for manufacturing net-shape one-way clutch bearing outer race of an automobile automatic transmission unit is developed. The process is composed of hot forging for manufacturing an optimized gear-like perform and precision cold forging for sizing the perform into final net-shape product. Finite element simulation techniques are applied to find the optimized process designs including blank and die shapes. The predictions and experiments are compared, revealing that they are in good agreement with each other. The dimensional test showed that the important dimensional requirements on gear tooth-like shape of the forged product were fulfilled.

  • PDF

Simulation of nonstationary wind in one-spatial dimension with time-varying coherence by wavenumber-frequency spectrum and application to transmission line

  • Yang, Xiongjun;Lei, Ying;Liu, Lijun;Huang, Jinshan
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.425-434
    • /
    • 2020
  • Practical non-synoptic fluctuating wind often exhibits nonstationary features and should be modeled as nonstationary random processes. Generally, the coherence function of the fluctuating wind field has time-varying characteristics. Some studies have shown that there is a big difference between the fluctuating wind field of the coherent function model with and without time variability. Therefore, it is of significance to simulate nonstationary fluctuating wind field with time-varying coherent function. However, current studies on the numerical simulation of nonstationary fluctuating wind field with time-varying coherence are very limited, and the proposed approaches are usually based on the traditional spectral representation method with low simulation efficiency. Especially, for the simulation of multi-variable wind field of large span structures such as transmission tower-line, not only the simulation is inefficient but also the matrix decomposition may have singularity problem. In this paper, it is proposed to conduct the numerical simulation of nonstationary fluctuating wind field in one-spatial dimension with time-varying coherence based on the wavenumber-frequency spectrum. The simulated multivariable nonstationary wind field with time-varying coherence is transformed into one-dimensional nonstationary random waves in the simulated spatial domain, and the simulation by wavenumber frequency spectrum is derived. So, the proposed simulation method can avoid the complicated Cholesky decomposition. Then, the proper orthogonal decomposition is employed to decompose the time-space dependent evolutionary power spectral density and the Fourier transform of time-varying coherent function, simultaneously, so that the two-dimensional Fast Fourier transform can be applied to further improve the simulation efficiency. Finally, the proposed method is applied to simulate the longitudinal nonstationary fluctuating wind velocity field along the transmission line to illustrate its performances.

Use of 3D Printing Model for the Management of Fibrous Dysplasia: Preliminary Case Study

  • Choi, Jong-Woo;Jeong, Woo Shik
    • Journal of International Society for Simulation Surgery
    • /
    • 제3권1호
    • /
    • pp.36-38
    • /
    • 2016
  • Fibrous dysplasia is a relatively rare disease but the management would be quite challenging. Because this is not a malignant tumor, the preservation of the facial contour and the various functions seems to be important in treatment planning. Until now the facial bone reconstruction with autogenous bone would be the standard. Although the autogenous bone would be the ideal one for facial bone reconstruction, donor site morbidity would be the inevitable problem in many cases. Meanwhile, various types of allogenic and alloplastic materials have been also used. However, facial bone reconstruction with many alloplastic material have produced no less complications including infection, exposure, and delayed wound healing. Because the 3D printing technique evolved so fast that 3D printed titanium implant were possible recently. The aim of this trial is to try to restore the original maxillary anatomy as possible using the 3D printing model, based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. And we molded Titanium mesh to reconstruct three-dimensional maxillary structure during the operation. This prefabricated Titanium-mesh implant was then inserted onto the defected maxilla and fixed. Three dimensional printing technique of titanium material based on the computer simulation turned out to be successful in this patient. Individualized approach for each patient could be an ideal way to restore the facial bone.

3D Printed Titanium Implant for the Skull Reconstruction: A Preliminary Case Study

  • Choi, Jong-Woo;Ahn, Jae-Sung
    • Journal of International Society for Simulation Surgery
    • /
    • 제1권2호
    • /
    • pp.99-102
    • /
    • 2014
  • The skull defect can be made after the trauma, oncologic problems or neurosurgery. The skull reconstruction has been the challenging issue in craniofacial fields for a long time. So far the skull reconstruction with autogenous bone would be the standard. Although the autogenous bone would be the ideal one for skull reconstruction, donor site morbidity would be the inevitable problem in many cases. Meanwhile various types of allogenic and alloplastic materials have been also used. However, skull reconstruction with many alloplastic material have produced no less complications including infection, exposure, and delayed wound healing. Because the 3D printing technique evolved so fast that 3D printed titanium implant were possible recently. The aim of this trial is to try to restore the original skull anatomy as possible using the 3D printed titanium implant, based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. And we fabricated Titanium implant to reconstruct three-dimensional orbital structure in advance, using the 3D printer. This prefabricated Titanium-implant was then inserted onto the defected skull and fixed. Three dimensional printing technique of titanium material based on the computer simulation turned out to be very successful in this patient. Individualized approach for each patient could be an ideal way to manage the traumatic patients in near future.

A Design Procedure for Safety Simulation System Using Virtual Reality

  • Ki, Jae-Seug
    • 대한안전경영과학회지
    • /
    • 제1권1호
    • /
    • pp.69-77
    • /
    • 1999
  • One of the objectives of any task design is to provide a safe and helpful workplace for the employees. The safety and health module may include means for confronting the design with safety and health regulations and standards as well as tools for obstacles and collisions detection (such as error models and simulators), Virtual Reality is a leading edge technology which has only very recently become available on platforms and at prices accessible to the majority of simulation engineers. The design of an automated manufacturing system is a complicated, multidisciplinary task that requires involvement of several specialists. In this paper, a design procedure that facilitates the safety and ergonomic considerations of an automated manufacturing system are described. The procedure consists of the following major steps. Data collection and analysis of the data, creation of a three-dimensional simulation model of the work environment, simulation for safety analysis and risk assessment, development of safety solutions, selection of the preferred solutions, implementation of the selected solutions, reporting, and training. When improving the safety of an existing system the three-dimensional simulation model helps the designer to perceive the work from operators point of view objectively and safely without the exposure to hazards of the actual system.

  • PDF