• Title/Summary/Keyword: One-Shot systems

Search Result 65, Processing Time 0.026 seconds

A Study on the Establishment of Reliability Growth Planning for One-shot System (원샷시스템의 신뢰도 성장 계획 설정 방안)

  • Seo, Yang Woo;Jeon, Dong Ju;Kim, So Jung;Kim, Yong Geun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In this paper we proposed to develop the reliability growth planning for the One-shot system using the PM2-Discrete model. The PM2-Discrete is the methodology specifically developed for discrete systems and is the first quantitative method available for formulating detailed plans in the discrete usage domain. First, the parameters RG, RI, T, MS and d of the PM2-Discrete model are set. Second, the case analysis was performed on One-shot system A. Third, the input parameter values were applied to drive the R(t) equation. Finally, using RGA 11 Software, the reliability Growth Planning Curve of One-shot system A was constructed. Also, the sensitivity analyses are performed for the changes of model parameters. The results of this study can be usefully used in establishing the reliability growth planning curve of the One-shot system.

Reliability Analysis for One-Shot Systems with Periodic Inspection (주기적 검사가 실시되는 원샷 시스템의 신뢰도 분석)

  • Kim, Ha Won;Yun, Won Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.1
    • /
    • pp.20-29
    • /
    • 2016
  • This paper considers one-shot systems such as missiles, air bags of automobiles that are stored for a long time and are used at most once. One shot systems are inspected periodically to detect system failures and repair the system because we do not know whether the system will work or not on demand. Thus, we can keep high availability of the system by periodic inspection. Martinez (1984) obtained the system reliability approximately. In this paper, we obtain the exact system reliability under periodic inspection. Finally, we compare the system reliability from our formula with one of Martinez (1984) by numerical examples.

Comparison of Reliability Estimation Methods for One-shot Systems Using Accelerated Life Tests (가속수명시험을 이용한 원샷 시스템의 신뢰도 추정방법 비교)

  • Son, Young-Kap;Jang, Hyun-Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.4
    • /
    • pp.212-218
    • /
    • 2010
  • This paper shows accuracy comparison results of reliability estimation methods for one-shot systems with respect to sample sizes. To compare accuracy in reliability estimation methods, quantal-response data, characterizing one-shot systems, were simulated using failure times of LED obtained through the accelerated life test, and then the true reliability over time was evaluated using the failure times. The simulated quantal-response data were used to estimate the true reliability through applying reliability estimation methods in open literature. Accuracy of each reliability estimation method was compared in terms of both SSE (Sum of Squared Error) and MSE (Mean Squared Error), and then estimation trend for each method is found. Feasible bounds which true reliability would exist within were estimated through applying the found trends to quantal-response data set of a real weapon system.

Effect Analysis of Sample Size and Sampling Periods on Accuracy of Reliability Estimation Methods for One-shot Systems using Multiple Comparisons (다중비교를 이용한 샘플수와 샘플링 시점수의 원샷 시스템 신뢰도 추정방법 정확성에 대한 영향 분석)

  • Son, Young-Kap
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.435-441
    • /
    • 2012
  • This paper provides simulation-based results of effect analysis of sample size and sampling periods on accuracy of reliability estimation methods using multiple comparisons with analysis of variance. Sum of squared errors in estimated reliability measures were evaluated through applying seven estimation methods for one-shot systems to simulated quantal-response data. Analysis of variance was implemented to investigate change in these errors according to variations of sample size and sampling periods for each estimation method, and then the effect analysis on accuracy in reliability estimation was performed using multiple comparisons based on sample size and sampling periods. An efficient way to allocate both sample size and sampling periods for reliability estimation tests of one-shot systems is proposed in this paper from the effect analysis results.

A Study of Factors Influencing the Range of 81mm HE shells One-Shot systems based on CART Regression analysis (CART 회귀분석 기반 일회성 시스템 81mm 고폭탄 사거리에 영향을 미치는 요인 분석)

  • Myung Sung Kim;Jun Hyeok Choi;Young Min Kim
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.1
    • /
    • pp.107-113
    • /
    • 2023
  • For one-shot systems such as 81mm high-explosive ammunition, research on performance prediction is insignificant due to research manpower infrastructure and lack of interest and difficulties in securing field data, which can only be done by special task workers. In order to evaluate the actual range of ammunition, the storage ammunition reliability evaluation checks the range by firing actual ammunition through a functional test. Test evaluation is a method of extracting a sample from the population, launching it, and recording the results accordingly. As a result of these tests, the range, which is an indicator of ammunition performance, can be measured differently according to meteorological factors such as temperature, atmospheric pressure, and humidity according to the location of the test site. In this study, various environmental factors generated at the test site and storage period analyze the correlation with the range, which is the performance of ammunition, and analyze the priority of importance for each factor and the numerical standards that environmental factors affect range. Through this, a new approach to one-shot system performance prediction was presented.

Error Model Analysis and Performance Evaluation for the Rapid Alignment Technique of Projectile Navigation System in Inclined Launch Systems (경사 고각 발사 시스템에서의 발사체 항법장치 급속 초기정렬기법에 대한 오차모델 분석 및 성능평가)

  • Park, Sebeen
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.195-204
    • /
    • 2022
  • In this paper, we described the rapid initial alignment techniques of projectile navigation system for use in inclined launch systems. One-shot alignment technique, one of the rapid initial alignment techniques, is possible to align a navigation system within seconds because it uses external information from an launcher navigation system. However, since it has only been used in vertical launch systems, its performance in inclined launch systems has not been verified. Therefore, this paper analyzed the error elements that occur when the one-shot alignment technique is applied to the inclined launch system, and introduced a method to improve the alignment performance by minimizing those errors. Additionally, By simulating and testing the performance of the proposed alignment technique, it was verified that it is effective even in an environment where a real navigation system is used.

Optimal Inspection Policy for One-Shot Systems Considering Reliability Goal (목표 신뢰도를 고려한 원-샷 시스템의 최적검사정책)

  • Jeong, Seung-Woo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.96-104
    • /
    • 2017
  • A one-shot system (device) refers to a system that is stored for a long period of time and is then disposed of after a single mission because it is accompanied by a chemical reaction or physical destruction when it operates, such as shells, munitions in a defense weapon system and automobile airbags. Because these systems are primarily related with safety and life, it is required to maintain a high level of storage reliability. Storage reliability is the probability that the system will operate at a particular point in time after storage. Since the stored one-shot system can be confirmed only through inspection, periodic inspection and maintenance should be performed to maintain a high level of storage reliability. Since the one-shot system is characterized by a large loss in the event of a failure, it is necessary to determine an appropriate inspection period to maintain the storage reliability above the reliability goal. In this study, we propose an optimal inspection policy that minimizes the total cost while exceeding the reliability goal that the storage reliability is set in advance for the one-shot system in which periodic inspections are performed. We assume that the failure time is the Weibull distribution. And the cost model is presented considering the existing storage reliability model by Martinez and Kim et al. The cost components to be included in the cost model are the cost of inspection $c_1$, the cost of loss per unit time between failure and detection $c_2$, the cost of minimum repair of the detected breakdown of units $c_3$, and the overhaul cost $c_4$ of $R_s{\leq}R_g$. And in this paper, we will determine the optimal inspection policy to find the inspection period and number of tests that minimize the expected cost per unit time from the finite lifetime to the overhaul. Compare them through numerical examples.

Failure Data Error according to Characteristics of One-Shot Weapon System and its Solution (일회성 무기체계 특성에 따른 고장 데이터의 오차 및 극복방안)

  • Choi, Yunsuk;Ma, Jungmok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.599-606
    • /
    • 2018
  • Failure data of systems in many field can be erroneous, which influences the reliability analysis of the systems. The general form of failure data is right censored data with accurate time information. But due to its nature of data collection in the military field, failure time of one-shot weapon systems can have errors which are related to the maintenance period. So this paper suggests a model that can reduce the error by utilizing interval censored data as an alternative to right censored data in weibull distribution.

Influence Analysis of Sampling Points on Accuracy of Storage Reliability Estimation for One-shot Systems (원샷 시스템의 저장 신뢰성 추정 정확성에 대한 샘플링 시점의 영향 분석)

  • Chung, Yong H.;Oh, Bong S.;Lee, Hong C.;Park, Hee N.;Jang, Joong S.;Park, Sang C.
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.32-40
    • /
    • 2016
  • Purpose: The purpose of this study is to analyze the effect of sampling points on accuracy of storage reliability estimation for one-shot systems by assuming a weibull distribution as a storage reliability distribution. Also propose method for determining of sampling points for increase the accuracy of reliability estimation. Methods: Weibull distribution was divided into three sections for confirming the possible to estimate the parameters of the weibull distribution only some section's sample. Generate quantal response data for failure data. And performed parameter estimation with quantal response data. Results: If reduce sample point interval of 1 section, increase the accuracy of reliability estimation although sampling only section 1. Even reduce total number of sampling point, reducing sampling time interval of the 1 zone improve the accuracy of reliability estimation. Conclusion: Method to increase the accuracy of reliability estimation is increasing number of sampling and the sampling points. But apply this method to One-shot system is difficult because test cost of one-shot system is expensive. So propose method of accuracy of storage reliability estimation of one-shot system by adjustment of the sampling point. And by dividing the section it could reduce the total sampling point.

A Study on Optimal Solution of Short Shot Using Modular Fuzzy Logic Based Neural Network (MENN) (모듈형 퍼지-신경망을 이용한 미성형 사출제품의 최적 해결에 관한 연구)

  • 강성남;허용정;조현찬
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.465-469
    • /
    • 2001
  • In injection molding short shot is one of the frequent and fatal defects. Experts of Injection molding usually adjust process conditions such as injection time, mold temperature, and melt temperature because it is most economic way in time and cost. However, it is difficult task to find appropriate process conditions for troubleshooting of short shot as injection molding process is a highly nonlinear system and process conditions are coupled. In this paper, a modular fuzzy neural network (MFNN) has been applied to injection molding process to shorten troubleshooting time of short shot. Based on melt temperature and fill time, a reasonable initial mo이 temperature is recommenced by the NFNN, and then the mold temperature is inputted to injection molding process. Depending on injection molding result, specifically the insufficient quantity of an injection molded part. and appropriate mold temperature is recommend repeatedly through the NFNN.

  • PDF