• 제목/요약/키워드: One dimensional measurements

검색결과 249건 처리시간 0.029초

유연한 Quality factor가 가능한 단순한 광섬유 팁 공진 구조물 (Simple fiber tip assembly with flexible Quality factor)

  • 나경필;권오대
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2002년도 제13회 정기총회 및 2002년도 동계학술발표회
    • /
    • pp.260-261
    • /
    • 2002
  • For Near-field Scanning Optical Microscopy measurements, the fiber tip is glued on the side of one of the tuning fork prongs vertically to its extended direction. Higher Q-factor is attainable in this geometry than in the arrangement with the fiber tip parallel to the prong. A simple mechanical design is applied to hold the fiber tip above the gluing point. The overall tuning fork-fiber tip assembly gives another advantage of the flexible Q-factor enhancement. With this treatment, Q-factor higher than 3000 is easily achievable. As an operating instance, a grating is scanned for its one dimensional topographical image.

  • PDF

곡면 끝벽을 갖는 터빈 노즐 안내깃 캐스케이드내 3차원 유동장에 관한 실험적 연구 (Experimental Study on Effects of the Contoured Endwall on the Three-Dimensional Flow in a Turbine Nozzle Guide Vane Cascade)

  • 윤원남;정진택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1975-1980
    • /
    • 2004
  • The three-dimensional flow in a turbine nozzle guide vane passage causes large secondary loss through the passage and increased heat transfer on the blade surface. In order to reduce or control these secondary flows, a linear cascade with a contoured endwall configuration was used and changes in the three-dimensional flow field were analyzed and discussed. Measurements of secondary flow velocity and total pressure loss within the passage have been performed by means of five-hole probes. The investigation was carried out at fixed exit Reynolds number of $4.0{\times}10^5$. The objective of this study is to document the development of the three-dimensional flow in a turbine nozzle guide vane cascade with modified endwall. The results show that the development of passage vortex and cross flow in the cascade composed of one flat and one contoured endwalls are affected by the flow acceleration which occurs in contoured endwall side. The overall loss is reduced near the flat endwall rather than contoured endwall.

  • PDF

점토의 일차원 압밀과정중 작용하는 수평토압과 간극수압 (Lateral Stress and Pore Pressure During One-dimensional Consolidation of Clay)

  • 김재영
    • 한국지반공학회논문집
    • /
    • 제20권6호
    • /
    • pp.5-10
    • /
    • 2004
  • 일반적으로 일차원 압밀상태에 있는 정지토압계수 $K_0$값은 삼축시험에서 구해지지만, 압밀중의 간극수의 흐름이 방사류이고, 공시체의 변형이 3차원적이므로, 얻어진 값의 신뢰성에는 의문이 있다. 여기서는, 일차원 압밀시험기를 개량하여, 압밀링 중앙높이에 배치한 압밀링 요소를 토압감지부로 하며, 감지부 중앙에서는 간극수압을 측정하였다. 내경 6cm의 압밀링은 부동(浮動)링 형식으로 높이 4cm의 공시체 중앙높이가 항상 같은 위치를 유지하는 구조이다. 직경 6cm의 공시체와 샘플링후 시료변형을 고려한 압밀링 내경보다 직경이 약간 작은 공시체에서 얻은 압밀종료시의 $K_0$값은 공시체직경과 압밀압력에 상관없이 거의 0.5를 나타내었다.

Application of Cu-loaded One-dimensional TiO2 Nanorods for Elevated Photocatalytic Environmental Friendly Hydrogen Production

  • Kim, Dong Jin;Tonda, Surendar;Jo, Wan-Kuen
    • 한국환경과학회지
    • /
    • 제30권1호
    • /
    • pp.57-67
    • /
    • 2021
  • Photocatalytic green energy H2 production utilizing inexhaustible solar energy has been considered as a potential solution to problems of energy scarcity and environmental contamination. However, the design of a cost-effective photocatalyst using simple synthesis methodology is still a grand challenge. Herein, a low-cost transition metal, Cu-loaded one-dimensional TiO2 nanorods (Cu/TNR) were fabricated using an easy-to-use synthesis methodology for significant H2 production under simulated solar light. X-ray photoelectron spectral studies and electron microscopy measurements provide evidence to support the successful formation of the Cu/TNR catalyst under our experimental conditions. UV-vis DRS studies further demonstrate that introducing Cu on the surface of TNR substantially increases light absorption in the visible range. Notably, the Cu/TNR catalyst with optimum Cu content, achieved a remarkable H2 production with a yield of 39,239 µmol/g after 3 h of solar light illumination, representing 7.4- and 27.7-fold enhancements against TNR and commercial P25, respectively. The notably improved H2 evolution activity of the target Cu/TNR catalyst was primarily attributed to its excellent separation and efficiently hampered recombination of photoexcited electron-hole pairs. The Cu/TNR catalyst is, therefore, a potential candidate for photocatalytic green energy applications.

Hydration Effect on the Intrinsic Magnetism of Natural Deoxyribonucleic Acid as Studied by EMR Spectroscopy and SQUID Measurements

  • Kwon, Young-Wan;Lee, Chang-Hoon;Do, Eui-Doo;Choi, Dong-Hoon;Jin, Jung-Il;Kang, Jun-Sung;Koh, Eui-Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권6호
    • /
    • pp.1233-1242
    • /
    • 2008
  • The hydration effect on the intrinsic magnetism of natural salmon double-strand DNA was explored using electron magnetic resonance (EMR) spectroscopy and superconducting quantum interference device (SQUID) magnetic measurements. We learned from this study that the magnetic properties of DNA are roughly classified into two distinct groups depending on their water content: One group is of higher water content in the range of 2.6-24 water molecules per nucleotide (wpn), where all the EMR parameters and SQUID susceptibilities are dominated by spin species experiencing quasi one-dimensional diffusive motion and are independent of the water content. The other group is of lower water content in the range of 1.4-0.5 wpn. In this group, the magnetic properties are most probably dominated by cyclotron motion of spin species along the helical π -way, which is possible when the momentum scattering time (${\tau}_k$) is long enough not only to satisfy the cyclotron resonance condition (${\omega}_c{\tau}_k$ > 1) but also to induce a constructive interference between the neighboring double helices. The same effect is reflected in the S-shaped magnetization-magnetic field strength (M-H) curves superimposed with the linear background obtained by SQUID measurements, which leads to larger susceptibilities at 1000 G when compared with the values at 10,000 G. In particular, we propose that the spin-orbital coupling and Faraday's mutual inductive effect can be utilized to interpret the dimensional crossover of spin motions from quasi 1D in the hydrate state to 3D in the dry state of dsDNA.

Three-dimensional evaluation of the transfer accuracy of a bracket jig fabricated using computer-aided design and manufacturing to the anterior dentition: An in vitro study

  • Park, Jae-Hyun;Choi, Jin-Young;Kim, Seong-Hun;Kim, Su-Jung;Lee, Kee-Joon;Nelson, Gerald
    • 대한치과교정학회지
    • /
    • 제51권6호
    • /
    • pp.375-386
    • /
    • 2021
  • Objective: To evaluate the accuracy of a one-piece bracket jig system fabricated using computer-aided design and manufacturing (CAD/CAM) by employing three-dimensional (3D) digital superimposition. Methods: This in vitro study included 226 anterior teeth selected from 20 patients undergoing orthodontic treatment. Bracket position errors from each of the 40 arches were analyzed quantitatively via 3D digital superimposition (best-fit algorithm) of the virtual bracket and actual bracket after indirect bonding, after accounting for possible variables that may affect accuracy, such as crowding and presence of the resin base. Results: The device could transfer the bracket accurately to the desired position of the patient's dentition within a clinically acceptable range of ± 0.05 mm and 2.0° for linear and angular measurements, respectively. The average linear measurements ranged from 0.029 to 0.101 mm. Among the angular measurements, rotation values showed the least deviation and ranged from 0.396° to 0.623°. Directional bias was pronounced in the vertical direction, and many brackets were bonded toward the occlusal surface. However, no statistical difference was found for the three angular measurement values (torque, angulation, and rotation) in any of the groups classified according to crowding. When the teeth were moderately crowded, the mesio-distal, bucco-lingual, and rotation measurement values were affected by the presence of the resin base. Conclusions: The characteristics of the CAD/CAM one-piece jig system were demonstrated according to the influencing factors, and the transfer accuracy was verified to be within a clinically acceptable level for the indirect bracket bonding of anterior teeth.

접지 그리드 설계를 위한 전기 저항 단층촬영법에 기반한 지표의 3차원 저항률 분포 추정 (Three-Dimensional Subsurface Resistivity Profile using Electrical Resistance Tomography for Designing Grounding Grid)

  • 캄밤파티 아닐 쿠마;김경연
    • 전자공학회논문지
    • /
    • 제53권4호
    • /
    • pp.117-128
    • /
    • 2016
  • 대지의 접지 시스템 설치는 안전성과 전기 기기의 올바른 작동을 위해 필수적이며, 대지 파라미터, 특히 토양의 저항률은 대지 접지 시스템 설계에서 결정되어야 한다. 토양의 저항률을 측정하기 위한 가장 흔한 방법은 Wenner의 4전극 방법이 있으며, 이 방법은 1차원의 저항률을 얻기 위하여 가변 전극 간격을 갖는 큰 측정 세트가 요구되어 번거롭고, 시간소모가 많으며 비용이 많이 든다. 전기 저항 단층촬영법은 저비용이며 빠른 측정이 가능하다는 장점 때문에 토양의 저항률 분포를 추정하기 위해 적용될 수 있다. 전기 저항 단층은 관심지역에 놓인 전극에서 얻은 측정데이터를 사용하여 토양 저항률 분포를 특성화한다. 이때 전기 단층 촬영법의 역문제는 비선형성이 강하여 저항률 분포를 추정하기 위하여 Tikhonov 조정 방법을 갖는 반복적 Gauss-Newton 방법을 사용한다. 다양한 시뮬레이션을 수행하여 3차원 토양의 저항률 분포를 추정하는데 전기 저항 단층 촬영법은 유용한 성능을 제공하고 있음을 확인하였다.

A Bayesian Model-based Clustering with Dissimilarities

  • Oh, Man-Suk;Raftery, Adrian
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.9-14
    • /
    • 2003
  • A Bayesian model-based clustering method is proposed for clustering objects on the basis of dissimilarites. This combines two basic ideas. The first is that tile objects have latent positions in a Euclidean space, and that the observed dissimilarities are measurements of the Euclidean distances with error. The second idea is that the latent positions are generated from a mixture of multivariate normal distributions, each one corresponding to a cluster. We estimate the resulting model in a Bayesian way using Markov chain Monte Carlo. The method carries out multidimensional scaling and model-based clustering simultaneously, and yields good object configurations and good clustering results with reasonable measures of clustering uncertainties. In the examples we studied, the clustering results based on low-dimensional configurations were almost as good as those based on high-dimensional ones. Thus tile method can be used as a tool for dimension reduction when clustering high-dimensional objects, which may be useful especially for visual inspection of clusters. We also propose a Bayesian criterion for choosing the dimension of the object configuration and the number of clusters simultaneously. This is easy to compute and works reasonably well in simulations and real examples.

  • PDF

He-Ne 레이저와 CCD 카메라를 이용한 비접촉 3차원 측정 (Noncontact 3-dimensional measurement using He-Ne laser and CCD camera)

  • 김봉채;전병철;김재도
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1862-1870
    • /
    • 1997
  • A fast and precise technique to measure 3-dimensional coordinates of an object is proposed. It is essential to take the 3-dimensional measurements of the object in design and inspection. Using this developed system a surface model of a complex shape can be constructed. 3-dimensional world coordinates are projected onto a camera plane by the perspective transformation, which plays an important role in this measurement system. According to the shape of the object two measuring methods are proposed. One is rotation of an object and the other is translation of measuring unit. Measuring speed depending on image processing time is obtained as 200 points per second. Measurement resolution i sexperimented by two parameters among others; the angle between the laser beam plane and the camera, and the distance between the camera and the object. As a result of these experiments, it was found that measurement resolution ranges from 0.3mm to 1.0mm. This constructed surface model could be used in manufacturing tools such as rapid prototyping machine.

매스콘크리트 시험체의 수화열 해석 및 실험 (Numerical Simulation of Temperature and Stress Distribution in Mass Concrete with pipe cooling and Comparision with Experimental Measurements)

  • 주영춘;김은겸;신치범;조규영;박용남
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.269-274
    • /
    • 1999
  • Various method have been developed for mass concrete structures to reduce the temperature increase of concrete mass due to exothermic hydration reactions of concrete compounds and thereby to avoid thermal cracks. One of the methods widely acceptable for practical use is pipe cooling, in which cooling is achieved by circulating cold water through thin-wall steel pipes embedded in the concrete. A numerical simulation was performed to investigate the effectiveness of pipe cooling. A three-dimensional finite element method was proposed to analyse the transient three-dimensional heat transfer between the hardening concrete and the cooling water in pipe and to predict the stress development during the curing process. The effects of the cement type and content and the environment were taken into consideration by the heat generation rate and the boundary conditions, respectively. In order to test the validity of the numerical simulation, a model RC structure with pipe cooling was constructed and the time-dependent temperature and stress distributions within the structure as well as the variation of the temperature of cooling water along the pipe were measured. The results of the simulation agreed well the experimental measurements. The results of this study have important implications for the optimal design of the cooling pipe layout and for the estimation of thermal stress in order to eliminate thermal cracks.

  • PDF