• Title/Summary/Keyword: Oncogenes

Search Result 131, Processing Time 0.026 seconds

MicroRNA-328 Inhibits Proliferation of Human Melanoma Cells by Targeting TGFB2

  • Li, Jing-Rong;Wang, Jian-Qin;Gong, Qing;Fang, Rui-Hua;Guo, Yun-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1575-1579
    • /
    • 2015
  • Some microRNAs (miRNAs) have been shown to act as oncogenes or tumor suppressor genes in human melanomas. miR-328 is upregulated in blood cells of melanoma patients compared to in healthy controls. This suggests a role for miR-328 in melanoma that warrants investigation. In this study, we demonstrated miR-328 levels to be dramatically decreased in human melanoma cell lines. Moreover, forced expression of miR-328 inhibited proliferation and induced G1-phase arrest of the SK-MEL-1 melanoma cell line. We identified TGFB2 as a direct target gene for miR-328 using a fluorescent reporter assay and western blotting. Levels of TGFB2 were dramatically increased in human melanoma cell lines and were inversely correlated with the miR-328 expression level. Our findings provide new insights into the mechanisms of human melanoma development, indicating that miR-328 has therapeutic potential for this disease.

TRAIL and Bortezomib: Killing Cancer with Two Stones

  • Qureshi, Muhammad Zahid;Romero, Mirna Azalea;Attar, Rukset;Javed, Zeeshan;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1671-1674
    • /
    • 2015
  • Cancer genomics and proteomics have undergone considerable broadening in the past decades and increasingly it is being realized that solid/liquid phase microarrays and high-throughput resequencing have provided platforms to improve our existing knowledge of determinants of cancer development, progression and survival. Loss of apoptosis is a widely and deeply studied process and different approaches are being used to restore apoptosis in resistant cancer phenotype. Modulating the balance between pro-apoptotic and anti-apoptotic proteins is essential to induce apoptosis. It is becoming more understood that pharmacological inhibition of the proteasome might prove to be an effective option in improving TRAIL induced apoptosis in cancer cells. Keeping in view rapidly accumulating evidence of carcinogenesis, metastasis, resistance against wide ranging therapeutics and loss of apoptosis, better knowledge regarding tumor suppressors, oncogenes, pro-apoptotic and anti-apotptic proteins will be helpful in translating the findings from benchtop to bedside.

Stemness and Proliferation of Murine Skin-Derived Precursor Cells under Hypoxic Environment

  • Kim, Hyewon;Park, Sangkyu;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.41 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • Skin-derived precursors (SKPs) have potential to differentiate to various cell types including osteoblasts, adipocytes and neurons. SKPs are a candidate for cell-based therapy since they are easily accessible and have multipotency. Most mammalian cells are exposed to a low oxygen environment with 1 to 5% $O_2$ concentration in vivo, while 21% $O_2$ concentration is common in in vitro culture. The difference between in vitro and in vivo $O_2$ concentration may affect to the behavior of cultured cells. In this report, we investigated the effect of hypoxic condition on stemness and proliferation of SKPs. The results indicated that SKPs exposed to hypoxic condition for 5 days showed no change in proliferation. In terms of mRNA expression, hypoxia maintained expression of stemness markers; whereas, oncogenes, such as Klf4 and c-Myc, were downregulated, and the expression of Nestin, related to cancer migration, was also downregulated. Thus, SKPs cultured in hypoxia may reduce the risk of cancer in SKP cell-based therapy.

Differential Gene Expression after Adenovirus-Mediated p16 Gene Transfer in Human Non-Small Cell Lung Cancer Cells (폐암세포주에서 아데노바이러스 매개 p16 유전자 전달로 인한 유전자 발현의 변화)

  • 박미선;김옥희;박현신;지승완;엄미옥;염태경;강호일
    • Toxicological Research
    • /
    • v.20 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • For the safety evaluation of adenovirus-mediated gene transfer, we investigated differential gene expressions after transfecting adenoviral vector containing p16 tumor suppressor gene (Ad5CMV-p16) into human non-small cell lung cancer cells. In the previous study, we showed adenovirus-mediated $p16^{INK4a}$ gene transfer resulted in significant inhibition of cancer cell growth. We investigated gene expression changes after transfecting Ad5CMV-p16, Ad5CMV (null type, a mock vector) into A549 cells by using cDNA chip and oligonucleotide microarray chip (1200 genes) which carries genes related with signal transduction pathways, cell cycle regulations, oncogenes and tumor suppressor genes. We found that $p16^{INK4a}$ gene transfer down regulated 5 genes (cdc2, cyclin D3, cyclin B, cyclin E, cdk2) among 26 genes involved in cell cycle regulations. Compared with serum-free medium treated cells, Ad5CMV-p16 changed 27 gene expressions, two fold or more on oligonucleotide chip. In addition, Ad5CMV-p16 did not seem to increase the tumorigenicity-related gene expression in A549 cells. Further studies will be needed to investigate the effect of Ad5CMV-p16 on normal human cells and tissues for safety evaluation.

An Integrative Approach to Precision Cancer Medicine Using Patient-Derived Xenografts

  • Cho, Sung-Yup;Kang, Wonyoung;Han, Jee Yun;Min, Seoyeon;Kang, Jinjoo;Lee, Ahra;Kwon, Jee Young;Lee, Charles;Park, Hansoo
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.77-86
    • /
    • 2016
  • Cancer is a heterogeneous disease caused by diverse genomic alterations in oncogenes and tumor suppressor genes. Despite recent advances in high-throughput sequencing technologies and development of targeted therapies, novel cancer drug development is limited due to the high attrition rate from clinical studies. Patient-derived xenografts (PDX), which are established by the transfer of patient tumors into immunodeficient mice, serve as a platform for co-clinical trials by enabling the integration of clinical data, genomic profiles, and drug responsiveness data to determine precisely targeted therapies. PDX models retain many of the key characteristics of patients' tumors including histology, genomic signature, cellular heterogeneity, and drug responsiveness. These models can also be applied to the development of biomarkers for drug responsiveness and personalized drug selection. This review summarizes our current knowledge of this field, including methodologic aspects, applications in drug development, challenges and limitations, and utilization for precision cancer medicine.

F93-A: A Inhibitor of Farnesyl Protein Transferase from Aspergillus fumigatus KL93

  • Kwon, Byoung-Mog;Lee, Seung-Ho;Jeong, Tae-Sook;Kim, Sung-Uk;Son, Kwang-Hee;Park, Diol;Kim, Young-Kook;Nam, Ji-Youn;Bok, Song-Hae
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.66-66
    • /
    • 1995
  • Mutated forms of the ras oncogenes are associated with about 30% of human tumors. The ras genes encode 21KDa proteins, called p21 or Ras, that are associated with the plasma membrane. FPTase is a dimeric enzyme that catalyses the transfer of the farnesyl group from farnesyl pyrophosphate onto cysteine 186 at the C-terminus of the Ras protein. This is mandatory process for triggering ras oncogene toward tumor formation. Therefore, selective inhibitors of FPTase have the potential to be used as antitumorgenic agents.

  • PDF

Autophagy: Noble target mechanisms in natural medicines as anticancer agents (자가식세포작용: 천연물항암제로서의 신규작용기전)

  • Kang, Se-Chan
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.57-66
    • /
    • 2010
  • Programmed cell death systems are important for an active type of cell deaths. Among them, a type of programmed cell death, autophagy is activated in cancer cells in response to multiple stresses and has been demonstrated to promote tumor cell survival and drug resistance. Thus, in the area of cancer, over the time frame form around the 1940s to date, of the 155 small molecules, 73% are other than "synthetic", with 47% actually being either "natural products" or "directly derived therefrom". Autophagy has multiple physiological functions in multicellular organisms, including protein degradation and organelle turnover. Genes and proteins that constitute the basic machinery of the autophagic process were first identified in the yeast system and some of their mammalian orthologues have been characterized as well. Numerous oncogenes, including Akt1, Bcl-2, NF1, PDPK1, class I PI3K, PTEN, and Ras and oncosuppressors, inculuding Bec-1, Bif-1, DAPK-1, p53 and UVRAG suppress or promote the autophagy pathway. Regulation of autophagy in tumors is governed by similar principles of the normal cells, only in a much more complicated manner, given the frequently observed abnormal PI3K activation in cancer and the multitude of interactions between the PI3K/AKT/mTOR pathway and other cell signaling cascades, often also deregulated in tumor cells. Autophagy induction by some anticancer agents underlines the potential utility of its induction as a new cancer treatment modality of development for natural medicines.

(E)-2-Methoxy-4-(3-(4-Methoxyphenyl)Prop-1-en-1-yl)Phenol Induces Apoptosis in HeLa Cervical Cancer Cells via the Extrinsic Apoptotic Pathway

  • Park, Chan-Woo;Song, Yong-Seok;Lee, Hee Pom;Hong, Jin Tae;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1359-1366
    • /
    • 2017
  • (E)-2-Methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP), derived from butenal, is a recently synthesized Maillard reaction product. Owing to its novelty, little is known about the function of MMPP. In this study, we elucidated the effects of MMPP on apoptosis in cervical cancer by using the HeLa cervical cancer cell line, which is widely used in cancer research. We observed that MMPP was cytotoxic to HeLa cells and induced activation of caspase-3, -8, and -9, without affecting the expression of the viral oncogenes E6 and E7. In particular, the expression of the death receptors DR5 and FAS was significantly increased by MMPP treatment. There were no significant alterations of mitochondrial intrinsic factors. Taking all these results together, our findings show that MMPP primarily induces apoptosis in HeLa cervical cancer cells via the extrinsic apoptotic signaling pathway, accompanied by an enhanced expression of death receptors.

DNA binding partners of YAP/TAZ

  • Kim, Min-Kyu;Jang, Ju-Won;Bae, Suk-Chul
    • BMB Reports
    • /
    • v.51 no.3
    • /
    • pp.126-133
    • /
    • 2018
  • Hippo signaling plays critical roles in regulation of tissue homeostasis, organ size, and tumorigenesis by inhibiting YES-associated protein (YAP) and PDZ-binding protein TAZ through MST1/2 and LATS1/2 pathway. It is also engaged in cross-talk with various other signaling pathways, including WNT, BMPs, Notch, GPCRs, and Hedgehog to further modulate activities of YAP/TAZ. Because YAP and TAZ are transcriptional coactivators that lack DNA-binding activity, both proteins must interact with DNA-binding transcription factors to regulate target gene's expression. To activate target genes involved in cell proliferation, TEAD family members are major DNA-binding partners of YAP/TAZ. Accordingly, YAP/TAZ were originally classified as oncogenes. However, YAP might also play tumor-suppressing role. For example, YAP can bind to DNA-binding tumor suppressors including RUNXs and p73. Thus, YAP might act either as an oncogene or tumor suppressor depending on its binding partners. Here, we summarize roles of YAP depending on its DNA-binding partners and discuss context-dependent functions of YAP/TAZ.

Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells

  • Choi, Eui-Hwan;Yoon, Seobin;Hahn, Yoonsoo;Kim, Keun P.
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.143-150
    • /
    • 2017
  • Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.