References
-
Agliano, A., Martin-Padura, I., Mancuso, P., Marighetti, P., Rabascio, C., Pruneri, G., Shultz, L.D., and Bertolini, F. (2008). Human acute leukemia cells injected in NOD/LtSz-scid/IL-
$2R\gamma$ null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int. J. Cancer 123, 2222-2227. https://doi.org/10.1002/ijc.23772 - Aparicio, S., Hidalgo, M., and Kung, A.L. (2015). Examining the utility of patient-derived xenograft mouse models. Nat. Rev. Cancer 15, 311-316. https://doi.org/10.1038/nrc3944
- Aytes, A., Mollevi, D.G., Martinez-Iniesta, M., Nadal, M., Vidal, A., Morales, A., Salazar, R., Capella, G., and Villanueva, A. (2012). Stromal interaction molecule 2 (STIM2) is frequently overexpressed in colorectal tumors and confers a tumor cell growth suppressor phenotype. Mol. Carcinog. 51, 746-753. https://doi.org/10.1002/mc.20843
- Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D.W., Dao, F., Dhir, R., DiSaia, P., Gabra, H., Glenn, P., et al. (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615. https://doi.org/10.1038/nature10166
- Bertolini, G., Roz, L., Perego, P., Tortoreto, M., Fontanella, E., Gatti, L., Pratesi, G., Fabbri, A., Andriani, F., Tinelli, S., et al. (2009). Highly tumorigenic lung cancer CD133(+) cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci. USA 106, 16281-16286. https://doi.org/10.1073/pnas.0905653106
- Bertotti, A., Migliardi, G., Galimi, F., Sassi, F., Torti, D., Isella, C., Cora, D., Di Nicolantonio, F., Buscarino, M., Petti, C., et al. (2011). A molecularly annotated platform of patient-derived xenografts ("xenopatients") identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508-523. https://doi.org/10.1158/2159-8290.CD-11-0109
- Chen, K., Ahmed, S., Adeyi, O., Dick, J.E., and Ghanekar, A. (2012). Human solid tumor xenografts in immunodeficient mice are vulnerable to lymphomagenesis associated with Epstein-Barr virus. PLoS One 7, e39294. https://doi.org/10.1371/journal.pone.0039294
- Choi, S.Y.C., Lin, D., Gout, P.W., Collins, C.C., Xu, Y., and Wang, Y.Z. (2014). Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv. Drug Deliver. Rev. 79-80, 222-237. https://doi.org/10.1016/j.addr.2014.09.009
- Das Thakur, M., Salangsang, F., Landman, A.S., Sellers, W.R., Pryer, N.K., Levesque, M.P., Dummer, R., McMahon, M., and Stuart, D.D. (2013). Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494, 251-255. https://doi.org/10.1038/nature11814
- de Groot, J.F., Fuller, G., Kumar, A.J., Piao, Y., Eterovic, K., Ji, Y.J., and Conrad, C.A. (2010). Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro. Oncol. 12, 233-242. https://doi.org/10.1093/neuonc/nop027
- Delitto, D., Pham, K., Vlada, A.C., Sarosi, G.A., Thomas, R.M., Behrns, K.E., Liu, C., Hughes, S.J., Wallet, S.M., and Trevino, J.G. (2015). Patient-derived xenograft models for pancreatic adenocarcinoma demonstrate retention of tumor morphology through incorporation of murine stromal elements. Am. J. Pathol. 185, 1297-1303. https://doi.org/10.1016/j.ajpath.2015.01.016
- DeRose, Y.S., Wang, G.Y., Lin, Y.C., Bernard, P.S., Buys, S.S., Ebbert, M.T.W., Factor, R., Matsen, C., Milash, B.A., Nelson, E., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 17, 1514-1520 https://doi.org/10.1038/nm.2454
- DiMasi, J.A., Reichert, J.M., Feldman, L., and Malins, A. (2013). Clinical approval success rates for investigational cancer drugs. Clin. Pharmacol. Ther. 94, 329-335. https://doi.org/10.1038/clpt.2013.117
- Ding, L., Ellis, M.J., Li, S.Q., Larson, D.E., Chen, K., Wallis, J., Harris, C.C., McLellan, M.D., Fulton, R.S., Fulton, L.L., et al. (2010). Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999-1005. https://doi.org/10.1038/nature08989
- Dong, X., Guan, J., English, J.C., Flint, J., Yee, J., Evans, K., Murray, N., Macaulay, C., Ng, R.T., Gout, P.W., et al. (2010). Patientderived first generation xenografts of non-small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy. Clin. Cancer Res. 16, 1442-1451. https://doi.org/10.1158/1078-0432.CCR-09-2878
- Dowst, H., Pew, B., Watkins, C., McOwiti, A., Barney, J., Qu, S., Becnel, L. B. (2015). Acquire: an open-source comprehensive cancer biobanking system. Bioinformatics 31, 1655-1662. https://doi.org/10.1093/bioinformatics/btv012
- Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., Gelmon, K., Chia, S., Mar, C., Wan, A., et al. (2015). Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422-426. https://doi.org/10.1038/nature13952
-
Fernandez de Sanmamamed, M., Lopez Rodriguez, I., Schalper, K.A., Onate, C., Azpilikueta, A., Rodriguez-Ruiz, M.E., Morales- Kastresana, A., Labiano, S., Perez-Gracia, J.L., Martin-Algarra, S., et al. (2015). Nivolumab and urelumab enhance antitumor activity of human T lymphocytes engrafted in Rag2-/-IL2R
$\gamma$ null immunodeficient mice. Cancer Res. 75, 3466-3478. https://doi.org/10.1158/0008-5472.CAN-14-3510 - Fichtner, I., Rolff, J., Soong, R., Hoffmann, J., Hammer, S., Sommer, A., Becker, M., and Merk, J. (2008). Establishment of patientderived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin. Cancer Res. 14, 6456-6468. https://doi.org/10.1158/1078-0432.CCR-08-0138
- Gao, D., and Chen, Y. (2015). Organoid development in cancer genome discovery. Curr. Opin. Genet. Dev. 30, 42-48. https://doi.org/10.1016/j.gde.2015.02.007
- Gao, H., Korn, J.M., Ferretti, S., Monahan, J.E., Wang, Y., Singh, M., Zhang, C., Schnell, C., Yang, G., Zhang, Y., et al. (2015). Highthroughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318-1325. https://doi.org/10.1038/nm.3954
- Garraway, L.A., Verweij, J., and Ballman, K.V. (2013). Precision oncology: an overview. J. Clin. Oncol. 31, 1803-1805. https://doi.org/10.1200/JCO.2013.49.4799
- Garrido-Laguna, I., Uson, M., Rajeshkumar, N.V., Tan, A.C., de Oliveira, E., Karikari, C., Villaroel, M.C., Salomon, A., Taylor, G., Sharma, R., et al. (2011). Tumor engraftment in nude mice and enrichment in stroma-related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin. Cancer Res. 17, 5793-5800. https://doi.org/10.1158/1078-0432.CCR-11-0341
- Girotti, M.R., Lopes, F., Preece, N., Niculescu-Duvaz, D., Zambon, A., Davies, L., Whittaker, S., Saturno, G., Viros, A., Pedersen, M., et al. (2015). Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell 27, 85-96. https://doi.org/10.1016/j.ccell.2014.11.006
- Hidalgo, M., Bruckheimer, E., Rajeshkumar, N.V., Garrido-Laguna, I., De Oliveira, E., Rubio-Viqueira, B., Strawn, S., Wick, M.J., Martell, J., and Sidransky, D. (2011). A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol. Cancer Ther. 10, 1311-1316. https://doi.org/10.1158/1535-7163.MCT-11-0233
- Hidalgo, M., Amant, F., Biankin, A.V., Budinska, E., Byrne, A.T., Caldas, C., Clarke, R.B., de Jong, S., Jonkers, J., Maelandsmo, G.M., et al. (2014). Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 4, 998-1013. https://doi.org/10.1158/2159-8290.CD-14-0001
- Hoffman, R.M. (2015). Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer 15, 451-452. https://doi.org/10.1038/nrc3972
- John, T., Yanagawa, N., Kohler, D., Craddock, K.J., Bandarchi- Chamkhaleh, B., Pintilie, M., Sykes, J., To, C., Li, M., Panchal, D., et al. (2012). Characterization of lymphomas developing in immunodeficient mice implanted with primary human non-small cell lung cancer. J. Thorac. Oncol. 7, 1101-1108. https://doi.org/10.1097/JTO.0b013e3182519d4d
- Johnson, J.I., Decker, S., Zaharevitz, D., Rubinstein, L.V., Venditti, J., Schepartz, S., Kalyandrug, S., Christian, M., Arbuck, S., Hollingshead, M., et al. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84, 1424-1431. https://doi.org/10.1054/bjoc.2001.1796
- Joo, K.M., Kim, J., Jin, J., Kim, M., Seol, H.J., Muradov, J., Yang, H., Choi, Y.L., Park, W.Y., Kong, D.S., et al. (2013). Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. Cell Rep. 3, 260-273. https://doi.org/10.1016/j.celrep.2012.12.013
- Julien, S., Merino-Trigo, A., Lacroix, L., Pocard, M., Goere, D., Mariani, P., Landron, S., Bigot, L., Nemati, F., Dartigues, P., et al. (2012). Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin. Cancer Res. 18, 5314-5328. https://doi.org/10.1158/1078-0432.CCR-12-0372
- Kimple, R.J., Harari, P.M., Torres, A.D., Yang, R.Z., Soriano, B.J., Yu, M., Armstrong, E.A., Blitzer, G.C., Smith, M.A., Lorenz, L.D., et al. (2013). Development and characterization of HPV-positive and HPV-negative head and neck squamous cell carcinoma tumorgrafts. Clin. Cancer Res. 19, 855-864. https://doi.org/10.1158/1078-0432.CCR-12-2746
- Keysar, S.B., Astling, D.P., Anderson, R.T., Vogler, B.W., Bowles, D.W., Morton, J.J., Paylor, J.J., Glogowska, M.J., Le, P.N., Eagles- Soukup, J.R., et al. (2013). A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins. Mol. Oncol. 7, 776- 790. https://doi.org/10.1016/j.molonc.2013.03.004
- Koboldt, D.C., Fulton, R.S., McLellan, M.D., Schmidt, H., Kalicki- Veizer, J., McMichael, J.F., Fulton, L.L., Dooling, D.J., Ding, L., Mardis, E.R., et al. (2012). Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70. https://doi.org/10.1038/nature11412
- Kopetz, S., Lemos, R., and Powis, G. (2012). The promise of patient- derived xenografts: the best laid plans of mice and men. Clin. Cancer Res. 18, 5160-5162. https://doi.org/10.1158/1078-0432.CCR-12-2408
- Kung, A.L. (2007). Practices and pitfalls of mouse cancer models in drug discovery. Adv. Cancer Res. 96, 191-212.
- Lai, A., Tran, A., Nghiemphu, P.L., Pope, W.B., Solis, O.E., Selch, M., Filka, E., Yong, W.H., Mischel, P.S., Liau, L.M., et al. (2011). Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J. Clin. Oncol. 29, 142-148. https://doi.org/10.1200/JCO.2010.30.2729
- Landis, M.D., Lehmann, B.D., Pietenpol, J.A., and Chang, J.C. (2013). Patient-derived breast tumor xenografts facilitating personalized cancer therapy. Breast Cancer Res. 15, 201. https://doi.org/10.1186/bcr3355
- Li, S.Q., Shen, D., Shao, J.Y., Crowder, R., Liu, W.B., Prat, A., He, X.P., Liu, S.Y., Hoog, J., Lu, C., et al. (2013). Endocrine-therapyresistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 4, 1116-1130. https://doi.org/10.1016/j.celrep.2013.08.022
- Lin, D., Wyatt, A. W., Xue, H., Wang, Y., Dong, X., Haegert, A., Wu, R., Brahmbhatt, S., Mo, F., Jong, L., et al. (2014). High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1271-1283. https://doi.org/10.1158/1538-7445.AM2014-1271
- Macconaill, L.E., and Garraway, L.A. (2010). Clinical implications of the cancer genome. J. Clin. Oncol. 28, 5219-5228. https://doi.org/10.1200/JCO.2009.27.4944
- Marangoni, E., Vincent-Salomon, A., Auger, N., Degeorges, A., Assayag, F., de Cremoux, P., de Plater, L., Guyader, C., De Pinieux, G., Judde, J.G., et al. (2007). A new model of patient tumorderived breast cancer xenografts for preclinical assays. Clin. Cancer Res. 13, 3989-3998. https://doi.org/10.1158/1078-0432.CCR-07-0078
- Masso-Valles, D., Jauset, T., Serrano, E., Sodir, N.M., Pedersen, K., Affara, N.I., Whitfield, J.R., Beaulieu, M.E., Evan, G.I., Elias, L., et al. (2015). Ibrutinib exerts potent antifibrotic and antitumor activities in mouse models of pancreatic adenocarcinoma. Cancer Res. 75, 1675-1681. https://doi.org/10.1158/0008-5472.CAN-14-2852
- Mattie, M., Christensen, A., Chang, M.S., Yeh, W., Said, S., Shostak, Y., Capo, L., Verlinsky, A., An, Z.L., Joseph, I., et al. (2013). Molecular characterization of patient-derived human pancreatic tumor xenograft models for preclinical and translational development of cancer therapeutics. Neoplasia 15, 1124-1136.
- Morton, C.L., and Houghton, P.J. (2007). Establishment of human tumor xenografts in immunodeficient mice. Nat. Protoc. 2, 247- 250. https://doi.org/10.1038/nprot.2007.25
- Morton, J.J., Bird, G., Keysar, S.B., Astling, D.P., Lyons, T.R., Anderson, R.T., Glogowska, M.J., Estes, P., Eagles, J.R., Le, P.N., et al. (2015). XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene (Epub ahead of print).
- Muzny, D.M., Bainbridge, M.N., Chang, K., Dinh, H.H., Drummond, J.A., Fowler, G., Kovar, C.L., Lewis, L.R., Morgan, M.B., Newsham, I.F., et al. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337. https://doi.org/10.1038/nature11252
- Nardella, C., Lunardi, A., Patnaik, A., Cantley, L.C., and Pandolfi, P.P. (2011). The APL paradigm and the "co-clinical trial" project. Cancer Discov. 1, 108-116. https://doi.org/10.1158/2159-8290.CD-11-0061
- Nemati, F., Sastre-Garau, X., Laurent, C., Couturier, J., Mariani, P., Desjardins, L., Piperno-Neumann, S., Lantz, O., Asselain, B., Plancher, C., et al. (2010). Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors. Clin. Cancer Res. 16, 2352- 2362. https://doi.org/10.1158/1078-0432.CCR-09-3066
- Ostman, A. (2012). The tumor microenvironment controls drug sensitivity. Nat. Med. 18, 1332-1334. https://doi.org/10.1038/nm.2938
- Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L., et al. (2004). EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA 101, 13306- 13311. https://doi.org/10.1073/pnas.0405220101
- Park, H., Cho, S.Y., Kim, H., Na, D., Han, J.Y., Chae, J., Park, C., Park, O.K., Min, S, Kang, J., et al. (2015). Genomic alterations in BCL2L1 and DLC1 contribute to drug sensitivity in gastric cancer. Proc. Natl. Acad. Sci. USA 112, 12492-12497. https://doi.org/10.1073/pnas.1507491112
- Quintas-Cardama, A., and Cortes, J. (2009). Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113, 1619- 1630. https://doi.org/10.1182/blood-2008-03-144790
- Reyal, F., Guyader, C., Decraene, C., Lucchesi, C., Auger, N., Assayag, F., De Plater, L., Gentien, D., Poupon, M.F., Cottu, P., et al. (2012). Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res. 14, R11. https://doi.org/10.1186/bcr3095
- Reyes, G., Villanueva, A., Garcia, C., Sancho, F.J., Piulats, J., Lluis, F., and Capella, G. (1996). Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice. Cancer Res. 56, 5713-5719.
- Rongvaux, A., Willinger, T., Martinek, J., Strowig, T., Gearty, S.V., Teichmann, L.L., Saito, Y., Marches, F., Halene, S., Palucka, A.K., et al. (2014). Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 32, 364-U230. https://doi.org/10.1038/nbt.2858
- Rosen, J.M., and Jordan, C.T. (2009). The increasing complexity of the cancer stem cell paradigm. Science 324, 1670-1673. https://doi.org/10.1126/science.1171837
- Rosfjord, E., Lucas, J., Li, G., and Gerber, H.P. (2014). Advances in patient-derived tumor xenografts: From target identification to predicting clinical response rates in oncology. Biochem. Pharmacol. 91, 135-143. https://doi.org/10.1016/j.bcp.2014.06.008
- Schatton, T., Murphy, G.F., Frank, N.Y., Yamaura, K., Waaga- Gasser, A.M., Gasser, M., Zhan, Q., Jordan, S., Duncan, L.M., Weishaupt, C., et al. (2008). Identification of cells initiating human melanomas. Nature 451, 345-349. https://doi.org/10.1038/nature06489
- Scott, C.L., Becker, M.A., Haluska, P., and Samimi, G. (2013). Patient- derived xenograft models to improve targeted therapy in epithelial ovarian cancer treatment. Front. Oncol. 3, 295.
- Shaw, A.T., Yeap, B.Y., Solomon, B.J., Riely, G.J., Gainor, J., Engelman, J.A., Shapiro, G.I., Costa, D.B., Ou, S.H.I., Butaney, M., et al. (2011). Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 12, 1004-1012. https://doi.org/10.1016/S1470-2045(11)70232-7
- Siolas, D., and Hannon, G.J. (2013). Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 73, 5315-5319. https://doi.org/10.1158/0008-5472.CAN-13-1069
- Slamon, D., Eiermann, W., Robert, N., Pienkowski, T., Martin, M., Press, M., Mackey, J., Glaspy, J., Chan, A., Pawlicki, M., et al. (2011). Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 365, 1273-1283. https://doi.org/10.1056/NEJMoa0910383
- Tentler, J.J., Tan, A.C., Weekes, C.D., Jimeno, A., Leong, S., Pitts, T.M., Arcaroli, J.J., Messersmith, W.A., and Eckhardt, S.G. (2012). Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338-350. https://doi.org/10.1038/nrclinonc.2012.61
- Verhaak, R.G.W., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R., Ding, L., Golub, T., Mesirov, J.P., et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98-110. https://doi.org/10.1016/j.ccr.2009.12.020
- Von Hoff, D.D., Ramanathan, R.K., Borad, M.J., Laheru, D.A., Smith, L.S., Wood, T.E., Korn, R.L., Desai, N., Trieu, V., Iglesias, J.L., et al. (2011). Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol. 29, 4548-4554. https://doi.org/10.1200/JCO.2011.36.5742
- Von Hoff, D.D., Ervin, T., Arena, F.P., Chiorean, E.G., Infante, J., Moore, M., Seay, T., Tjulandin, S.A., Ma, W.W., Saleh, M.N., et al. (2013). Increased survival in pancreatic cancer with nabpaclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691-1703. https://doi.org/10.1056/NEJMoa1304369
- Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013). The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113-1120. https://doi.org/10.1038/ng.2764
- Wetterauer, C., Vlajnic, T., Schuler, J., Gsponer, J.R., Thalmann, G.N., Cecchini, M., Schneider, J., Zellweger, T., Pueschel, H., Bachmann, A., et al. (2015). Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. Prostate 75, 585-592. https://doi.org/10.1002/pros.22939
- Whittle, J.R., Lewis, M.T., Lindeman, G.J., and Visvader, J.E. (2015). Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 17, 17. https://doi.org/10.1186/s13058-015-0523-1
- Williams, S.A., Anderson, W.C., Santaguida, M.T., and Dylla, S.J. (2013). Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Lab. Invest. 93, 970-982. https://doi.org/10.1038/labinvest.2013.92
- Zhang, X.M., Claerhout, S., Prat, A., Dobrolecki, L.E., Petrovic, I., Lai, Q., Landis, M.D., Wiechmann, L., Schiff, R., Giuliano, M., et al. (2013). A Renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 73, 4885-4897. https://doi.org/10.1158/0008-5472.CAN-12-4081
- Zhang, L.H., Liu, Y.Q., Wang, X.H., Tang, Z.Y., Li, S.X., Hu, Y., Zong, X.L., Wu, X.J., Bu, Z.D., Wu, A.W., et al. (2015). The extent of in flammatory infiltration in primary cancer tissues is associated with lymphomagenesis in immunodeficient mice. Sci. Rep. 5, 9447. https://doi.org/10.1038/srep09447
- Zhao, X.M., Liu, Z.G., Yu, L.T., Zhang, Y.J., Baxter, P., Voicu, H., Gurusiddappa, S., Luan, J., Su, J.M., Leung, H.C.E., et al. (2012). Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro. Oncol. 14, 574-583. https://doi.org/10.1093/neuonc/nos061
Cited by
- Preclinical disease and preventive strategies in IBD: perspectives, challenges and opportunities vol.65, pp.7, 2016, https://doi.org/10.1136/gutjnl-2016-311785
- Humanized mouse models: Application to human diseases 2018, https://doi.org/10.1002/jcp.26045
- Pancreatic cancer models for translational research vol.173, 2017, https://doi.org/10.1016/j.pharmthera.2017.02.013
- Patient-derived xenografts as in vivo models for research in urological malignancies vol.14, pp.5, 2017, https://doi.org/10.1038/nrurol.2017.19
- The promise of Janus kinase inhibitors in the treatment of hematological malignancies vol.98, 2017, https://doi.org/10.1016/j.cyto.2016.10.012
- A multiplex preclinical model for adenoid cystic carcinoma of the salivary gland identifies regorafenib as a potential therapeutic drug vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-11764-2
- A Small Molecule Inhibitor of the β-Catenin-TCF4 Interaction Suppresses Colorectal Cancer Growth In Vitro and In Vivo 2017, https://doi.org/10.1016/j.ebiom.2017.09.029
- Suppressor of cytokine signaling-1 gene therapy induces potent antitumor effect in patient-derived esophageal squamous cell carcinoma xenograft mice vol.140, pp.11, 2017, https://doi.org/10.1002/ijc.30666
- Cancer Immunotherapy: Historical Perspective of a Clinical Revolution and Emerging Preclinical Animal Models vol.8, 2017, https://doi.org/10.3389/fimmu.2017.00829
- Patient-derived conditionally reprogrammed cells maintain intra-tumor genetic heterogeneity vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-22427-1
- Tumor xenograft animal models for esophageal squamous cell carcinoma vol.25, pp.1, 2018, https://doi.org/10.1186/s12929-018-0468-7
- Murine models based on acute myeloid leukemia-initiating stem cells xenografting vol.10, pp.6, 2018, https://doi.org/10.4252/wjsc.v10.i6.57
- simulation of pancreatic ductal adenocarcinoma vol.8, pp.37, 2018, https://doi.org/10.1039/C8RA02633E
- The Generation and Application of Patient-Derived Xenograft Model for Cancer Research vol.50, pp.1, 2018, https://doi.org/10.4143/crt.2017.307
- Bacterial Therapy of Cancer: Promises, Limitations, and Insights for Future Directions vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.00016
- Alterations in the Rho pathway contribute to Epstein-Barr virus–induced lymphomagenesis in immunosuppressed environments vol.131, pp.17, 2018, https://doi.org/10.1182/blood-2017-07-797209
- Animal models for modeling pancreatic cancer and novel drug discovery vol.14, pp.2, 2019, https://doi.org/10.1080/17460441.2019.1566319
- Targeting RRM2 and Mutant BRAF Is a Novel Combinatorial Strategy for Melanoma vol.14, pp.9, 2016, https://doi.org/10.1158/1541-7786.mcr-16-0099
- The Challenge of Developing Autophagy Inhibition as a Therapeutic Strategy vol.76, pp.19, 2016, https://doi.org/10.1158/0008-5472.can-16-0722
- Transplantation of Zebrafish Pediatric Brain Tumors into Immune-competent Hosts for Long-term Study of Tumor Cell Behavior and Drug Response vol.123, pp.None, 2016, https://doi.org/10.3791/55712
- H3B-6527 Is a Potent and Selective Inhibitor of FGFR4 in FGF19-Driven Hepatocellular Carcinoma vol.77, pp.24, 2017, https://doi.org/10.1158/0008-5472.can-17-1865
- Modelomics to Investigate Cancer Bone Metastasis vol.4, pp.2, 2016, https://doi.org/10.1007/s40610-018-0094-x
- Mesenchymal glioblastoma constitutes a major ceRNA signature in the TGF-β pathway vol.8, pp.17, 2016, https://doi.org/10.7150/thno.26550
- Alpha, 2’-dihydroxy-4,4’-dimethoxydihydrochalcone inhibits cell proliferation, invasion, and migration in gastric cancer in part via autophagy vol.98, pp.None, 2018, https://doi.org/10.1016/j.biopha.2017.12.081
- Use of patient-derived xenograft mouse models in cancer research and treatment vol.4, pp.3, 2018, https://doi.org/10.4155/fsoa-2017-0136
- Protocol for the avatar acceptability study: a multiperspective cross-sectional study evaluating the acceptability of using patient-derived xenografts to guide personalised cancer care in Australia an vol.8, pp.8, 2016, https://doi.org/10.1136/bmjopen-2018-024064
- Generation and application of patient-derived xenograft models in pancreatic cancer research vol.132, pp.22, 2016, https://doi.org/10.1097/cm9.0000000000000524
- Oncological and genetic factors impacting PDX model construction with NSG mice in pancreatic cancer vol.33, pp.1, 2016, https://doi.org/10.1096/fj.201800617r
- SELECTED ASPECTS OF ALLO- AND XENOGRAFT MODEL APPLICATIONS FOR DEVELOPING NOVEL ANTI-CANCER VACCINES AND ONCOLYTIC VIRUSES vol.21, pp.2, 2016, https://doi.org/10.15789/1563-0625-2019-2-221-230
- Development and Significance of Mouse Models in Lymphoma Research vol.14, pp.2, 2016, https://doi.org/10.1007/s11899-019-00504-0
- Systematic Review of Patient-Derived Xenograft Models for Preclinical Studies of Anti-Cancer Drugs in Solid Tumors vol.8, pp.5, 2016, https://doi.org/10.3390/cells8050418
- CTCs‐derived xenograft development in a triple negative breast cancer case vol.144, pp.9, 2016, https://doi.org/10.1002/ijc.32001
- Unstable Genome and Transcriptome Dynamics during Tumor Metastasis Contribute to Therapeutic Heterogeneity in Colorectal Cancers vol.25, pp.9, 2019, https://doi.org/10.1158/1078-0432.ccr-18-3460
- Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models vol.8, pp.8, 2016, https://doi.org/10.3390/cells8080889
- The promises and challenges of patient‐derived tumor organoids in drug development and precision oncology vol.2, pp.3, 2016, https://doi.org/10.1002/ame2.12077
- Review on biofabrication and applications of heterogeneous tumor models vol.13, pp.11, 2016, https://doi.org/10.1002/term.2949
- Genomic data analysis workflows for tumors from patient-derived xenografts (PDXs): challenges and guidelines vol.12, pp.1, 2019, https://doi.org/10.1186/s12920-019-0551-2
- Impact of mouse contamination in genomic profiling of patient-derived models and best practice for robust analysis vol.20, pp.1, 2019, https://doi.org/10.1186/s13059-019-1849-2
- Establishment of chemosensitivity tests in triple-negative and BRCA-mutated breast cancer patient-derived xenograft models vol.14, pp.12, 2016, https://doi.org/10.1371/journal.pone.0225082
- HSP90 Inhibitor Ganetespib (STA-9090) Inhibits Tumor Growth in c-Myc-Dependent Esophageal Squamous Cell Carcinoma vol.13, pp.None, 2016, https://doi.org/10.2147/ott.s245813
- Breast cancer animal models and applications vol.41, pp.5, 2020, https://doi.org/10.24272/j.issn.2095-8137.2020.095
- Targeting antisense mitochondrial noncoding RNAs induces bladder cancer cell death and inhibition of tumor growth through reduction of survival and invasion factors vol.11, pp.7, 2016, https://doi.org/10.7150/jca.38880
- High expression of olfactomedin-4 is correlated with chemoresistance and poor prognosis in pancreatic cancer vol.15, pp.1, 2020, https://doi.org/10.1371/journal.pone.0226707
- Patient-derived xenografts as compatible models for precision oncology vol.36, pp.None, 2016, https://doi.org/10.1186/s42826-020-00045-1
- Preclinical PERCIST and 25% of SUVmax Threshold: Precision Imaging of Response to Therapy in Co-clinical 18F-FDG PET Imaging of Triple-Negative Breast Cancer Patient–Deriv vol.61, pp.6, 2016, https://doi.org/10.2967/jnumed.119.234286
- Systematic Establishment of Robustness and Standards in Patient-Derived Xenograft Experiments and Analysis vol.80, pp.11, 2016, https://doi.org/10.1158/0008-5472.can-19-3101
- High expression levels of polymeric immunoglobulin receptor are correlated with chemoresistance and poor prognosis in pancreatic cancer vol.44, pp.1, 2016, https://doi.org/10.3892/or.2020.7610
- Co-Clinical Imaging Resource Program (CIRP): Bridging the Translational Divide to Advance Precision Medicine vol.6, pp.3, 2016, https://doi.org/10.18383/j.tom.2020.00023
- Patient-Derived Tumor Xenograft Models: Toward the Establishment of Precision Cancer Medicine vol.10, pp.3, 2020, https://doi.org/10.3390/jpm10030064
- Development and optimization of orthotopic liver metastasis xenograft mouse models in uveal melanoma vol.18, pp.1, 2020, https://doi.org/10.1186/s12967-020-02377-x
- The Essential Factors of Establishing Patient-derived Tumor Model vol.12, pp.1, 2016, https://doi.org/10.7150/jca.51749
- High levels of human epididymis protein 4 mRNA and protein expression are associated with chemoresistance and a poor prognosis in pancreatic cancer vol.58, pp.1, 2016, https://doi.org/10.3892/ijo.2020.5147
- Understanding cell‐cell communication and signaling in the colorectal cancer microenvironment vol.11, pp.2, 2021, https://doi.org/10.1002/ctm2.308
- Comparative Gene Signature of (−)-Oleocanthal Formulation Treatments in Heterogeneous Triple Negative Breast Tumor Models: Oncological Therapeutic Target Insights vol.13, pp.5, 2016, https://doi.org/10.3390/nu13051706
- An Overview on Diffuse Large B-Cell Lymphoma Models: Towards a Functional Genomics Approach vol.13, pp.12, 2016, https://doi.org/10.3390/cancers13122893
- Natural killer cells and cytotoxic T lymphocytes are required to clear solid tumor in a patient-derived xenograft vol.6, pp.13, 2021, https://doi.org/10.1172/jci.insight.140116
- Establishment and Characterization of Feline Mammary Tumor Patient-Derived Xenograft Model vol.11, pp.8, 2021, https://doi.org/10.3390/ani11082380
- Patient-Derived Xenograft Models in Cervical Cancer: A Systematic Review vol.22, pp.17, 2021, https://doi.org/10.3390/ijms22179369
- Predicting Cancer Drug Response In Vivo by Learning an Optimal Feature Selection of Tumour Molecular Profiles vol.9, pp.10, 2016, https://doi.org/10.3390/biomedicines9101319
- Patient-Derived Xenografts of High-Grade Serous Ovarian Cancer Subtype as a Powerful Tool in Pre-Clinical Research vol.13, pp.24, 2016, https://doi.org/10.3390/cancers13246288