• Title/Summary/Keyword: On-line Image Processing

Search Result 496, Processing Time 0.039 seconds

Precision Measurement using Scan-line image Segmentation Method (스캔라인 영상분할기법에 의한 정밀도 측정에 관한 연구)

  • Park, Jung-Su;Youn, Jae-Woong;Jung, Won
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.4
    • /
    • pp.29-36
    • /
    • 2002
  • In this paper, a new edge detection method for area images is presented based on the scan-line image segmentation technology. The existing algorithms are lack of precision in its detections due to the noise factors such as depth perception and illumination problems when processing the 3D image into a 2D image. The general process of applying the scan-line method is to extract straight line components to determine the shape of the objects. However, we implement this method to an arc curve for precise detections. the paper proved precise detections that from off line to on line.

  • PDF

A Study on Automatic Seam Tracking using Vision Sensor (비전센서를 이용한 자동추적장치에 관한 연구)

  • 전진환;조택동;양상민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1105-1109
    • /
    • 1995
  • A CCD-camera, which is structured with vision system, was used to realize automatic seam-tracking system and 3-D information which is needed to generate torch path, was obtained by using laser-slip beam. To extract laser strip and obtain welding-specific point, Adaptive Hough-transformation was used. Although the basic Hough transformation takes too much time to process image on line, it has a tendency to be robust to the noises as like spatter. For that reson, it was complemented with Adaptive Hough transformation to have an on-line processing ability for scanning a welding-specific point. the dead zone,where the sensing of weld line is impossible, is eliminated by rotating the camera with its rotating axis centered at welding torch. The camera angle is controlled so as to get the minimum image data for the sensing of weld line, hence the image processing time is reduced. The fuzzy controller is adapted to control the camera angle.

  • PDF

Implementation of OMR Answer Paper Scoring Method Using Image Processing Method (영상처리기법을 활용한 OMR 답안지 채점방법의 구현)

  • Kwon, Hiok-Han;Hwang, Gi-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.169-175
    • /
    • 2011
  • In this paper, an automatic scoring system of the OMR answer sheet is implemented using Gray Scale and image segmentation method. The proposed method was used to extract the OMR data on multiple-choice answer sheet from captured image. In addition, On-line scoring system is developed and implemented to mark the short-answer type on the reverse side. Therefore, teachers can mark the short-answer type for anytime and anywhere within the available time. There were many advantages to mark of the multiple-choice answer sheet without additional OMR reader. In the future, the grading of short-answer type will be more efficient if it were performed by using an automatic scoring system based on image processing.

Implementation of the high speed signal processing hardware system for Color Line Scan Camera (Color Line Scan Camera를 위한 고속 신호처리 하드웨어 시스템 구현)

  • Park, Se-hyun;Geum, Young-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1681-1688
    • /
    • 2017
  • In this paper, we implemented a high-speed signal processing hardware system for Color Line Scan Camera using FPGA and Nor-Flash. The existing hardware system mainly processed by high-speed DSP based on software and it was a method of detecting defects mainly by RGB individual logic, however we suggested defect detection hardware using RGB-HSL hardware converter, FIFO, HSL Full-Color Defect Decoder and Image Frame Buffer. The defect detection hardware is composed of hardware look-up table in converting RGB to HSL and 4K HSL Full-Color Defect Decoder with high resolution. In addition, we included an image frame for comprehensive image processing based on two dimensional image by line data accumulation instead of local image processing based on line data. As a result, we can apply the implemented system to the grain sorting machine for the sorting of peanuts effectively.

3-D Image Processing Using Laser Slit Beam and Neural Networks (레이저 슬릿빔과 신경망을 이용한 3차원 영상인식)

  • 김병갑;강이석;최경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.118-122
    • /
    • 1997
  • This paper presents a 3d image processing which uses neural networks to combine a 2D vision camera and a laser slit beam. A laser slit beam from laser source is slitted by a set of cylindrical lenses and the line image of the slit beam on the object is used to estimate the object parameters. The neural networks allow to get the 3D image parameters such as the size, the position and the orientation form the line image without knowing the camera intrinsic parameters.

  • PDF

A Study on a Vision Sensor System for Tracking the I-Butt Weld Joints

  • Kim Jae-Woong;Bae Hee-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1856-1863
    • /
    • 2005
  • In this study, a visual sensor system for weld seam tracking the I-butt weld joints in GMA welding was constructed. The sensor system consists of a CCD camera, a diode laser with a cylindrical lens and a band-pass-filter to overcome the degrading of image due to spatters and arc light. In order to obtain the enhanced image, quantitative relationship between laser intensity and iris opening was investigated. Throughout the repeated experiments, the shutter speed was set at 1/1000 second for minimizing the effect of spatters on the image, and therefore the image without the spatter traces could be obtained. Region of interest was defined from the entire image and gray level of the searched laser stripe was compared to that of weld line. The differences between these gray levels lead to spot the position of weld joint using central difference method. The results showed that, as long as weld line is within $\pm15^{o}$ from the longitudinal straight line, the system constructed in this study could track the weld line successfully. Since the processing time is no longer than 0.05 sec, it is expected that the developed method could be adopted to high speed welding such as laser welding.

Construction of Simulation Environment for Line Tracer Using Gazebo In ROS (ROS에서 Gazebo를 이용한 라인 트레이서 시뮬레이션 환경 구축)

  • Seung Hwang-Bo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.265-272
    • /
    • 2023
  • In this paper, we directly implemented the Line Tracer ROS package that can detect and follow lines drawn on the map on Gazebo, an open-source that is widely used in autonomous driving research. For line detection, the cv_bridge package was used to enable OpenCV's image processing tools, and parameters such as robot speed, line color and ground material could be changed. In addition, proportional (P) and PID controls could be implemented using the color centroid obtained through image processing. Through this approach, the effect of proportional and differential coefficients on the robot's line tracer motion could be analyzed effectively. In addition, by displaying robot simulation results using various tools of ROS, an efficient development for control nodes could be established in ROS.

System Design for High-speed Visual Inspection of Electronic Components (전자부품의 고속 외관검사를 위한 시스템 설계)

  • Yoo, Seungryeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.39-44
    • /
    • 2012
  • Electronics in modern lives have become more miniaturized and precise. Multi Layered Ceramic Capacitor (MLCC) occupies 50% of electronic components consisting of electronics. This high volume of the production needs high speed and more precise machine performances. The dominate parts of the production equipments are the module transporting components and the visual inspection module. Most visual inspection has been off-line because of the image processing time. In this paper, a new image processing method is proposed to reduce thousands of matrix calculation for image processing and realize on-line high speed inspection.

Qualification Test of ROCSAT -2 Image Processing System

  • Liu, Cynthia;Lin, Po-Ting;Chen, Hong-Yu;Lee, Yong-Yao;Kao, Ricky;Wu, An-Ming
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1197-1199
    • /
    • 2003
  • ROCSAT-2 mission is to daily image over Taiwan and the surrounding area for disaster monitoring, land use, and ocean surveillance during the 5-year mission lifetime. The satellite will be launched in December 2003 into its mission orbit, which is selected as a 14 rev/day repetitive Sun-synchronous orbit descending over (120 deg E, 24 deg N) and 9:45 a.m. over the equator with the minimum eccentricity. National Space Program Office (NSPO) is developing a ROCSAT-2 Image Processing System (IPS), which aims to provide real-time high quality image data for ROCSAT-2 mission. A simulated ROCSAT-2 image, based on Level 1B QuickBird Data, is generated for IPS verification. The test image is comprised of one panchromatic data and four multispectral data. The qualification process consists of four procedures: (a) QuickBird image processing, (b) generation of simulated ROCSAT-2 image in Generic Raw Level Data (GERALD) format, (c) ROCSAT-2 image processing, and (d) geometric error analysis. QuickBird standard photogrammetric parameters of a camera that models the imaging and optical system is used to calculate the latitude and longitude of each line and sample. The backward (inverse model) approach is applied to find the relationship between geodetic coordinate system (latitude, longitude) and image coordinate system (line, sample). The bilinear resampling method is used to generate the test image. Ground control points are used to evaluate the error for data processing. The data processing contains various coordinate system transformations using attitude quaternion and orbit elements. Through the qualification test process, it is verified that the IPS is capable of handling high-resolution image data with the accuracy of Level 2 processing within 500 m.

  • PDF

Development of a 1-Chip Application-Specific DSP for the Next Generation FAX Image Processing (차세대 팩스 영상처리를 위한 1-Chip Application-Specific DSP 기법)

  • 김재호;강구수;김서규;이진우;이방원;김윤수;조석팔;하성한
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.30-39
    • /
    • 1994
  • A 1-chip high quality binarizing VLSI image processor (which has 8 bit ADC. 6 bit flash ADC, 15K standard cell, and 1K word ROM) based on 10 MIPS 16 bit DSP is implemented for FAX. This image processor(IP) performs image pre-processing. image quality improvement in copying and sending mode, and mixed image processing based on the fuzzy theory. And smoothing in sub-scan direction is applied for normal receiving mode data so the received data is enhanced like fine mode data. Each algorithm is processed with the same type of image processing window and 2-D image processing is implemented with a 1-D line buffer. The fabricated chip is applied to a FAX machine and image quality improvement is verified.

  • PDF