• Title/Summary/Keyword: On-demand learning

Search Result 603, Processing Time 0.025 seconds

A Study on the Development of a Program for Predicting Successful Welding of Electric Vehicle Batteries Using Laser Welding (레이저 용접을 이용한 전기차 배터리 이종접합 성공 확률 예측 프로그램 개발에 관한 연구)

  • Cheol-Hwan Kim;Chan-Su Moon;Kwan-Su Lee;Jin-Su Kim;Ae-Ryeong Jo;Bo-Sung Shin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.44-49
    • /
    • 2023
  • In the global pursuit of carbon neutrality, the rapid increase in the adoption of electric vehicles (EVs) has led to a corresponding surge in the demand for batteries. To achieve high efficiency in electric vehicles, considerations of weight reduction and battery safety have become crucial factors. Copper and aluminum, both recognized as lightweight materials, can be effectively joined through laser welding. However, due to the distinct physical characteristics of these two materials, the process of joining them poses technical challenges. This study focuses on conducting simulations to identify the optimal laser parameters for welding copper and aluminum, with the aim of streamlining the welding process. Additionally, a Graphic User Interface (GUI) program has been developed using the Python language to visually present the results. Using machine learning image data, this program is anticipated to predict joint success and serve as a guide for safe and efficient laser welding. It is expected to contribute to the safety and efficiency of the electric vehicle battery assembly process.

A Framework Development for Sketched Data-Driven Building Information Model Creation to Support Efficient Space Configuration and Building Performance Analysis (효율적 공간 형상화 및 건물성능분석을 위한 스케치 정보 기반 BIM 모델 자동생성 프레임워크 개발)

  • Kong, ByungChan;Jeong, WoonSeong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.50-61
    • /
    • 2024
  • The market for compact houses is growing due to the demand for floor plans prioritizing user needs. However, clients often have difficulty communicating their spatial requirements to professionals including architects because they lack the means to provide evidence, such as spatial configurations or cost estimates. This research aims to create a framework that can translate sketched data-driven spatial requirements into 3D building components in BIM models to facilitate spatial understanding and provide building performance analysis to aid in budgeting in the early design phase. The research process includes developing a process model, implementing, and validating the framework. The process model describes the data flow within the framework and identifies the required functionality. Implementation involves creating systems and user interfaces to integrate various systems. The validation verifies that the framework can automatically convert sketched space requirements into walls, floors, and roofs in a BIM model. The framework can also automatically calculate material and energy costs based on the BIM model. The developed frame enables clients to efficiently create 3D building components based on the sketched data and facilitates users to understand the space and analyze the building performance through the created BIM models.

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.

Teachers' Recognition on the Optimization of the Educational Contents of Clothing and Textiles in Practical Arts or Technology.Home Economics (실과 및 기술.가정 교과에서 의생활 교육내용의 적정성에 대한 교사의 인식)

  • Baek Seung-Hee;Han Young-Sook;Lee Hye-Ja
    • Journal of Korean Home Economics Education Association
    • /
    • v.18 no.3 s.41
    • /
    • pp.97-117
    • /
    • 2006
  • The purpose of this study was to investigate the teachers' recognition on the optimization of the educational contents of Clothing & Textiles in subjects of :he Practical Arts or the Technology & Home Economics in the course of elementary, middle and high schools. The statistical data for this research were collected from 203 questionnaires of teachers who work on elementary, middle and high schools. Mean. standard deviation, percentage were calculated using SPSS/WIN 12.0 program. Also. these materials were verified by t-test, One-way ANOVA and post verification Duncan. The results were as follows; First, The equipment ratio of practice laboratory were about 24% and very poor in elementary schools but those of middle and high school were 97% and 78% each and higher than elementary schools. Second, More than 50% of teachers recognized the amount of learning 'proper'. The elementary school teachers recognized the mount of learning in 'operating sewing machines' too heavy especially, the same as middle school teachers in 'making shorts': the same as high school teachers in 'making tablecloth and curtain' and 'making pillow cover or bag'. Third, All of the elementary, middle and high school teachers recognized the levels of total contents of clothing and textiles 'common'. The 80% of elementary school teachers recognized 'operating sewing machines' and 'making cushions' difficult especially. The same as middle school teachers in 'hand knitting handbag by crochet hoop needle', 'the various kinds of cloth' and 'making short pants'. The same as high school teachers in 'making tablecloth or curtain'. Fourth, Elementary school teachers recognized 'practicing basic hand needlework' and 'making pouch using hand needlework' important in the degree of educational contents importance. Middle school teachers recognized 'making short pants unimportant. High school teachers considered the contents focusing on practice such as 'making tablecloth and curtain' and 'making pillow cover or bags' unimportant. My suggestions were as follows; Both laboratories and facilities for practice should be established for making clothing and textiles lessons effective in Practical Arts in elementary schools. The 'operating sewing machines' which were considered difficult should be dealt in upper grade, re-conditioning to easier or omitted. The practical contents should be changed to student-activity-oriented and should be recomposed in order to familiar with students' living. It was needed to various and sufficient supports for increasing the teachers' practical abilities.

  • PDF

A Pilot Study for Development of the Serious Game Contents for Education in the Elderly Diabetes (노인 당뇨환자 교육용 기능성 게임 콘텐츠 개발을 위한 예비연구)

  • Kim, Yu Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.184-192
    • /
    • 2017
  • This study was a pilot test of serious educational game content(named Roly Poly 160) designed to enhance self-care by elderly diabetics. Roly Poly 160 was developed in eight steps (literature review, demand survey and consultation, extraction of serious content using games, development of Roly Poly 160, pretest for users, workshop for health care workers, final completion of Roly Poly 160 and user satisfaction survey of Roly Poly 160). Roly Poly 160 is intuitively structured in three modules (self-management, card games, and quiz games) that can be self-managed by the elderly and is designed based on six principles. First, we constructed an intuitive interface considering the age of users. Second, the menu was selected as the main menu for Koreans and calorie learning was made at the same time. Third, the calories and nutrients (carbohydrate, fat, protein, calcium, sodium) of selected foods are analyzed, and all test data recorded in the questionnaire chart are graphically displayed by year, month and week so that the change trends can be grasped at a glance. Fourth, necessary data were saved and output and used as educational data. Fifth, user data are made compatible and aggregated and up to 100 million members can be registered. Sixth, it is designed to be developed as a mobile app if necessary. Using Roly Poly 160, 119 diabetic patients were diagnosed with diabetes, and the satisfaction score was 4.26 out of 5. These findings indicate that Roly Poly 160 is appropriate as a diabetes self-care tool and suggests that there is a possibility to use it as a program to educate people about diabetes in public health centers, hospitals and clinics.

Analysis and Design of Learning Support Tool through Multi-Casting Techniques (멀티 캐스팅 기법을 통한 학습지원도구의 분석 및 설계)

  • Kim, Jung-Soo;Shin, Ho-Jun;Han, Eun-Ju;Kim, Haeng-Kon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04b
    • /
    • pp.727-730
    • /
    • 2001
  • 초고속 인터넷 서비스의 확대에 따라 이를 교육에 직 간접적으로 응용하기 위한 노력이 지속적으로 진행되어 왔다. 특히 웹 기반의 가상강의 저작도구를 통한 웹 코스웨어는 원거리 학습자들의 학습 욕구를 자기 주도적인 학습을 통해 가능케 했고 기존의 텍스트, 사운드를 통한 가상강의에서 동영상이 가미된 주문형 교육 서비스(EOD: Education On Demand)가 가능해졌다. 그러나 이를 이용하는 학습자는 전체적인 모듈의 이해를 통해 수업이 진행됨에 따라 학습과정에서는 질의응답을 튜터를 통해 웹 캐스팅이 이루어졌다. 따라서, 질의응답은 텍스트 형식의 E-mail, 채팅, 게시판, 방명록을 통해 이루어지므로 학습자가 요구한 질의 내용을 잘못 이해하고 튜터가 학습 과정에서의 피드백을 제공하지 못함으로써 개인 학습의 동기부여가 감소됨에 따라 흥미를 잃게 되었다. 본 논문에서는 이러한 문제점을 개선하기 위해 멀티 캐스팅 기법을 통해 교육용 서버를 이용한 학습지원도구를 분석, 설계한다. 가상강의는 기본적인 컨텐츠를 제시하고 그를 통해 수업이 진행되는 과정에서의 질의응답을 일대다(One-To-Many)의 멀티 캐스팅 서비스를 튜터가 지정한 교육용 서버를 통해 텍스트 형식이 아닌 강의자료로 쓰인 문서 파일에 직접 작성하여 전송하게 된다. 따라서 튜터는 메일링 서비스를 통해 질문사항을 자신의 폴더 서비스로 확인하고 즉시 학습자에게 피드백을 제공함으로써 튜터와 학습자들간의 커뮤니케이션이 활발히 이루어지며, 상호작용의 증가를 통해 웹 기반의 컨퍼런싱(WBC: Web Based Conferencing)을 가질 수 있게 된다.rver는 Client가 요청한 Content(services)를 전달 해 주는 컨텐트 전달 모듈(Content Deliver Module)과 서버 Phonebook 엑세스 모들(Server Phonebook Access Module)로 구성되어 있다.외 보다 높았다(I/O ratio 2.5). BTEX의 상대적 함량도 실내가 실외보다 높아 실내에도 발생원이 있음을 암시하고 있다. 자료 분석결과 유치원 실내의 벤젠은 실외로부터 유입되고 있었고, 톨루엔, 에틸벤젠, 크실렌은 실외뿐 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화

  • PDF

Topic Modeling-Based Domestic and Foreign Public Data Research Trends Comparative Analysis (토픽 모델링 기반의 국내외 공공데이터 연구 동향 비교 분석)

  • Park, Dae-Yeong;Kim, Deok-Hyeon;Kim, Keun-Wook
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.1-12
    • /
    • 2021
  • With the recent 4th Industrial Revolution, the growth and value of big data are continuously increasing, and the government is also actively making efforts to open and utilize public data. However, the situation still does not reach the level of demand for public data use by citizens, At this point, it is necessary to identify research trends in the public data field and seek directions for development. In this study, in order to understand the research trends related to public data, the analysis was performed using topic modeling, which is mainly used in text mining techniques. To this end, we collected papers containing keywords of 'Public data' among domestic and foreign research papers (1,437 domestically, 9,607 overseas) and performed topic modeling based on the LDA algorithm, and compared domestic and foreign public data research trends. After analysis, policy implications were presented. Looking at the time series by topic, research in the fields of 'personal information protection', 'public data management', and 'urban environment' has increased in Korea. Overseas, it was confirmed that research in the fields of 'urban policy', 'cell biology', 'deep learning', and 'cloud·security' is active.

A Multi-speaker Speech Synthesis System Using X-vector (x-vector를 이용한 다화자 음성합성 시스템)

  • Jo, Min Su;Kwon, Chul Hong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.675-681
    • /
    • 2021
  • With the recent growth of the AI speaker market, the demand for speech synthesis technology that enables natural conversation with users is increasing. Therefore, there is a need for a multi-speaker speech synthesis system that can generate voices of various tones. In order to synthesize natural speech, it is required to train with a large-capacity. high-quality speech DB. However, it is very difficult in terms of recording time and cost to collect a high-quality, large-capacity speech database uttered by many speakers. Therefore, it is necessary to train the speech synthesis system using the speech DB of a very large number of speakers with a small amount of training data for each speaker, and a technique for naturally expressing the tone and rhyme of multiple speakers is required. In this paper, we propose a technology for constructing a speaker encoder by applying the deep learning-based x-vector technique used in speaker recognition technology, and synthesizing a new speaker's tone with a small amount of data through the speaker encoder. In the multi-speaker speech synthesis system, the module for synthesizing mel-spectrogram from input text is composed of Tacotron2, and the vocoder generating synthesized speech consists of WaveNet with mixture of logistic distributions applied. The x-vector extracted from the trained speaker embedding neural networks is added to Tacotron2 as an input to express the desired speaker's tone.

Trustworthy AI Framework for Malware Response (악성코드 대응을 위한 신뢰할 수 있는 AI 프레임워크)

  • Shin, Kyounga;Lee, Yunho;Bae, ByeongJu;Lee, Soohang;Hong, Heeju;Choi, Youngjin;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.1019-1034
    • /
    • 2022
  • Malware attacks become more prevalent in the hyper-connected society of the 4th industrial revolution. To respond to such malware, automation of malware detection using artificial intelligence technology is attracting attention as a new alternative. However, using artificial intelligence without collateral for its reliability poses greater risks and side effects. The EU and the United States are seeking ways to secure the reliability of artificial intelligence, and the government announced a reliable strategy for realizing artificial intelligence in 2021. The government's AI reliability has five attributes: Safety, Explainability, Transparency, Robustness and Fairness. We develop four elements of safety, explainable, transparent, and fairness, excluding robustness in the malware detection model. In particular, we demonstrated stable generalization performance, which is model accuracy, through the verification of external agencies, and developed focusing on explainability including transparency. The artificial intelligence model, of which learning is determined by changing data, requires life cycle management. As a result, demand for the MLops framework is increasing, which integrates data, model development, and service operations. EXE-executable malware and documented malware response services become data collector as well as service operation at the same time, and connect with data pipelines which obtain information for labeling and purification through external APIs. We have facilitated other security service associations or infrastructure scaling using cloud SaaS and standard APIs.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.