• Title/Summary/Keyword: On-demand learning

Search Result 603, Processing Time 0.031 seconds

Second-Order Learning for Complex Forecasting Tasks: Case Study of Video-On-Demand (복잡한 예측문제에 대한 이차학습방법 : Video-On-Demand에 대한 사례연구)

  • 김형관;주종형
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.1
    • /
    • pp.31-45
    • /
    • 1997
  • To date, research on data mining has focused primarily on individual techniques to su, pp.rt knowledge discovery. However, the integration of elementary learning techniques offers a promising strategy for challenging a, pp.ications such as forecasting nonlinear processes. This paper explores the utility of an integrated a, pp.oach which utilizes a second-order learning process. The a, pp.oach is compared against individual techniques relating to a neural network, case based reasoning, and induction. In the interest of concreteness, the concepts are presented through a case study involving the prediction of network traffic for video-on-demand.

  • PDF

Predicting Determinants of Seoul-Bike Data Using Optimized Gradient-Boost (최적화된 Gradient-Boost를 사용한 서울 자전거 데이터의 결정 요인 예측)

  • Kim, Chayoung;Kim, Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.861-866
    • /
    • 2022
  • Seoul introduced the shared bicycle system, "Seoul Public Bike" in 2015 to help reduce traffic volume and air pollution. Hence, to solve various problems according to the supply and demand of the shared bicycle system, "Seoul Public Bike," several studies are being conducted. Most of the research is a strategic "Bicycle Rearrangement" in regard to the imbalance between supply and demand. Moreover, most of these studies predict demand by grouping features such as weather or season. In previous studies, demand was predicted by time-series-analysis. However, recently, studies that predict demand using deep learning or machine learning are emerging. In this paper, we can show that demand prediction can be made a little better by discovering new features or ordering the importance of various features based on well-known feature-patterns. In this study, by ordering the selection of new features or the importance of the features, a better coefficient of determination can be obtained even if the well-known deep learning or machine learning or time-series-analysis is exploited as it is. Therefore, we could be a better one for demand prediction.

A sampling design for e-learning industry status survey on the business demand sector (이러닝수요부문 사업체실태조사를 위한 표본설계)

  • Kim, Hea-Jung;Kwak, Hwa-Ryun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.701-712
    • /
    • 2013
  • The e-learning industry status survey statistic provides information about the actual conditions of supply and demand of the e-learning industries. NIPA (National IT Industry Promotion Agency) has published the annual report of the survey results since 2004. Due to the 9th version of the KSIC (Korean standard industrial classification) revised in 2008, a refinement of the sampling design for the survey becomes necessary, especially that for the business demand sector. This article, based on the 9th revision of the KSIC, constructs a stratification of the target population used for the e-learning industry status survey on the business demand sector. Classification of strata in the business population is based on the industrial type and employment scale of business. Under the stratified population, we design a sampling scheme by using the power allocation method that enables us to satisfy a target coefficient of variation of each industrial stratum. In order to secure an accurate survey results based on the proposed sampling design, we consider the problem of calculating the design weights, derivation of parameter estimators, and formulas of their standard errors.

A Study on Predicting the demand for Public Shared Bikes using linear Regression

  • HAN, Dong Hun;JUNG, Sang Woo
    • Korean Journal of Artificial Intelligence
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • As the need for eco-friendly transportation increases due to the deepening climate crisis, many local governments in Korea are introducing shared bicycles. Due to anxiety about public transportation after COVID-19, bicycles have firmly established themselves as the axis of daily transportation. The use of shared bicycles is spread, and the demand for bicycles is increasing by rental offices, but there are operational and management difficulties because the demand is managed under a limited budget. And unfortunately, user behavior results in a spatial imbalance of the bike inventory over time. So, in order to easily operate the maintenance of shared bicycles in Seoul, bicycles should be prepared in large quantities at a time of high demand and withdrawn at a low time. Therefore, in this study, by using machine learning, the linear regression algorithm and MS Azure ML are used to predict and analyze when demand is high. As a result of the analysis, the demand for bicycles in 2018 is on the rise compared to 2017, and the demand is lower in winter than in spring, summer, and fall. It can be judged that this linear regression-based prediction can reduce maintenance and management costs in a shared society and increase user convenience. In a further study, we will focus on shared bike routes by using GPS tracking systems. Through the data found, the route used by most people will be analyzed to derive the optimal route when installing a bicycle-only road.

Development of Daily Peak Power Demand Forecasting Algorithm using ELM (ELM을 이용한 일별 최대 전력 수요 예측 알고리즘 개발)

  • Ji, Pyeong-Shik;Kim, Sang-Kyu;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.169-174
    • /
    • 2013
  • Due to the increase of power consumption, it is difficult to construct an accurate prediction model for daily peak power demand. It is very important work to know power demand in next day to manage and control power system. In this research, we develop a daily peak power demand prediction method based on Extreme Learning Machine(ELM) with fast learning procedure. Using data sets between 2006 and 2010 in Korea, the proposed method has been intensively tested. As the prediction results, we confirm that the proposed method makes it possible to effective estimate daily peak power demand than conventional methods.

Forecasting of Rental Demand for Public Bicycles Using a Deep Learning Model (딥러닝 모형을 활용한 공공자전거 대여량 예측에 관한 연구)

  • Cho, Keun-min;Lee, Sang-Soo;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.28-37
    • /
    • 2020
  • This study developed a deep learning model that predicts rental demand for public bicycles. For this, public bicycle rental data, weather data, and subway usage data were collected. After building an exponential smoothing model, ARIMA model and LSTM-based deep learning model, forecasting errors were compared and evaluated using MSE and MAE evaluation indicators. Based on the analysis results, MSE 348.74 and MAE 14.15 were calculated using the exponential smoothing model. The ARIMA model produced MSE 170.10 and MAE 9.30 values. In addition, MSE 120.22 and MAE 6.76 values were calculated using the deep learning model. Compared to the value of the exponential smoothing model, the MSE of the ARIMA model decreased by 51% and the MAE by 34%. In addition, the MSE of the deep learning model decreased by 66% and the MAE by 52%, which was found to have the least error in the deep learning model. These results show that the prediction error in public bicycle rental demand forecasting can be greatly reduced by applying the deep learning model.

Instructional Design for Distance Learning (원격교육을 위한 교수설계)

  • Ryu, Il;Kim, Jae-Jeon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.311-314
    • /
    • 1998
  • The increased demand for distance learning has created a need to explore the implications of the emerging paradigm shift on the learning environment. This paper is introducing the framework of distance learning in higher education. It also presents the experience of developing a course for distance learning.

  • PDF

The Development of an Intelligent Home Energy Management System Integrated with a Vehicle-to-Home Unit using a Reinforcement Learning Approach

  • Ohoud Almughram;Sami Ben Slama;Bassam Zafar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.87-106
    • /
    • 2024
  • Vehicle-to-Home (V2H) and Home Centralized Photovoltaic (HCPV) systems can address various energy storage issues and enhance demand response programs. Renewable energy, such as solar energy and wind turbines, address the energy gap. However, no energy management system is currently available to regulate the uncertainty of renewable energy sources, electric vehicles, and appliance consumption within a smart microgrid. Therefore, this study investigated the impact of solar photovoltaic (PV) panels, electric vehicles, and Micro-Grid (MG) storage on maximum solar radiation hours. Several Deep Learning (DL) algorithms were applied to account for the uncertainty. Moreover, a Reinforcement Learning HCPV (RL-HCPV) algorithm was created for efficient real-time energy scheduling decisions. The proposed algorithm managed the energy demand between PV solar energy generation and vehicle energy storage. RL-HCPV was modeled according to several constraints to meet household electricity demands in sunny and cloudy weather. Simulations demonstrated how the proposed RL-HCPV system could efficiently handle the demand response and how V2H can help to smooth the appliance load profile and reduce power consumption costs with sustainable power generation. The results demonstrated the advantages of utilizing RL and V2H as potential storage technology for smart buildings.

Study on the Students' Life Reflected in Social Indices and Its Implications for National Curriculum Design Focusing on School Health Education (사회적 지표에 나타난 학생의 모습이 국가 교육과정 설계에 주는 시사점: 보건교육 강화를 중심으로)

  • Cho, Hoje;Kim, Dae Seok
    • Journal of the Korean Society of School Health
    • /
    • v.27 no.3
    • /
    • pp.159-168
    • /
    • 2014
  • Purpose: The purpose of this study is to provide implications for National Curriculum design for elementary and secondary school, by analyzing social indices of students' real life based on Oliva's three types of demand for education. Three types of demand are physical, social-psychological and educational demand. Methods: This study mainly analyzed recent research data and existing studies relevant to social indices to show students' real life. Results: Three types of social indices about educational demand showed that students have many difficulties in much learning time, lacking in sleeping time and physical activities, much stress and suicide attempt. It is supposed that learning and academic achievement is the main factor to make such kind of stress. Conclusion: Health & safety education, self-esteem inspiring education, reduction of learning burden, physical activities etc are needed to be more reflected in National Curriculum design in the future.

Predicting the Performance of Forecasting Strategies for Naval Spare Parts Demand: A Machine Learning Approach

  • Moon, Seongmin
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Hierarchical forecasting strategy does not always outperform direct forecasting strategy. The performance generally depends on demand features. This research guides the use of the alternative forecasting strategies according to demand features. This paper developed and evaluated various classification models such as logistic regression (LR), artificial neural networks (ANN), decision trees (DT), boosted trees (BT), and random forests (RF) for predicting the relative performance of the alternative forecasting strategies for the South Korean navy's spare parts demand which has non-normal characteristics. ANN minimized classification errors and inventory costs, whereas LR minimized the Brier scores and the sum of forecasting errors.