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Second-Order Learning for Complex Forecasting Tasks:
Case Study of Video-On-Demand

Steven H. Kim* and Jonghyung Joo*

ABSTRACT

To date, research on data mining has focused primarily on individual techniques to support
knowledge discovery. However, the integration of elementary learning techniques offers a promising
strategy for challenging applications such as forecasting nonlinear processes.

This paper explores the utility of an integrated approach which utilizes a second-order learning
process. The approach is compared against individual techniques relating to a neural network, case
based reasoning, and induction. In the interest of concreteness, the concepts are presented through

a case study involving the prediction of network traffic for video-on-demand.

Key words: Neural networks, case based reasoning, induction.

INTRODUCTION

An intelligent supervisory system should be able to predict the dynamic behavior of a target

* Graduate School of Management, Korea Advanced Institute of Science and Technology.



™
oft
jad)
N
ot
oft

32

system as it reacts to transient environmental conditions. To this end, extensive research has been
conducted over the past few decades on individual learning techniques from artificial intelligence.
However, the integration of multiple techniques offers a promising path to improve performance
even further(Kim, 1994a, 1994b; etc.). In particular, an approach we call second-order learning
involves an integrated architecture where an adaptive module builds on the results of multiple
outputs from a preceding stage.

In the interest of concreteness, the concepts are presented through a case study involving the
prediction of network traffic involving flows of digitized video. Video-on-demand(VOD) is an in-
teractive service in which programs(such as movies, home shopping, etc.) are provided to users
through a network. VOD services are expected to represent a major segment of transmission ca-
pacity in broadband integrated digital networks(Kim et al.,, 1996, Petit et al., 1994).

This paper presents a comparative study of explicit and implicit methods to predict network
traffic for VOD services. The traffic patterns are characterized by stochastic as well as chaotic
behavior. The evaluated models include case based reasoning, induction, and a neural network, as

well as a second-order learning module.

METHODOLOGY

An integrated learning system should have the ability to accommodate a diversity of adaptive
techniques among its component subsystems. A number of the most promising techniques to em-

ploy In an integrated architecture is as follows.

Neural Networks.

Neural networks are characterized by robustness and graceful degradation (Hopfield, 1982;
Sejnowski, 1985). The most common type of neural network and training procedure takes the
form of backpropagation (BPN). Once trained, a backpropagation neural network responds to a
given input pattern with exactly the same output pattern every time a particular input pattern is

presented (Grossberg, 1974; Rumelhart et al., 1986).

Case Based Reasoning.
A learning system should make increasingly useful decisions as it accumulates experience. This

1s the express goal of the work In case based reasoning (CBR). The CBR methodology can be ef-
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fective even if the knowledge base is imperfect. Certain techniques of automated learning, such as
explanation-based learning, work well only if a strong domain theory exists. In contrast, CBR
can use many examples to overcome the gaps in a weak domain theory while still taking
advantage of *he fragmentary knowledge (Porter et al., 1990). CBR can also be used when the
descriptions  of the cases, as well as the domain theory, are incomplete (Sycara and
Navinchandra, 1991). The approach has been utilized iIn a4 number of forecasting applications
(Kim, 19954, 1995b; etc.). Figure 1 presents the predictive procedure through case based reason-

ing using composite neighbors.

1. Begin with current case x(t).

2. Seek the L neighboring cases x(¢,) in the past which are closet to x(17) according to
the cuclidean distance function:
| |
d, =13 (x(t)=x())' ] /
3. Compute the sum of distances: |

d,, :z/:d, ;

7l
4. Determine the relative weight of i neighbor:

= |
I-F' 4, }

where /7 1s a weighting factor.

AN

Find the successor x(/, +1) of each case x(/,) in the set of neighbors. w

6. Calculate the forecast tor 7 + 1 as the weighted sum of successors: }

!
N — 4 |
1(I+])v§l4‘x(l/+l) |

Figure 1. Predictive procedure through standard case based reasoning using composite neighbors.
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Inductive learning.

In this approach, a set of training examples is collected as mnput to the inductive learning pro-
gram. During the training phase, the description of a class is induced from individual examples.
Each example takes the form of a case and is described by a vector of attribute values. Concept
descriptions are generated to describe each class.

Inductive inference 1s a problem-solving process in which solutions (inductive concept descrip-
tions) are obtained through a process of search and generalization (Shaw and Gentry, 1990).
This paper uses a tree-induction technique utilizing the metric of entropy' from information the-

ory (Quinlan, 1986).

Integrated models and second-order learning.

There are many ways to integrate elementary learning techniques. For instance, one might use
the output from a CBR module in conjunction with raw data as inputs into a neural module, or
employ the converse architecture (Kim and Oh, 1996, etc.).

Another approach to integration involves a mullistrategy technique which may be called second-
order learning. This approach refers to the selection of an elementary model based on its antici-
pated performance. In this paper, inductive reasoning 1s used to select among forecasts from two
other learning techniques.

The elementary techniques representing first-order learning relate to CBR and backpropagation.
Subsequently the second stage employs inductive reasoning to determine the conditions under
which CBR or backpropagation performs better than the other. Then the forecast from the superr-
or method is selected on a case-by-case basis to determine the output of the overall system. In
other words, the second stage serves as a metalevel predictive system to discern which of two el

ementary modules (CBR or backpropagation) will perform better.

CASE STUDY

The utility of an integrated approach to forecasting was investigated through a case study in-

1) Entropy is used in information theory as a measure of the amount of information in a message based
on the average number of bits needed to encode all possible messages in an optimal coding (Shannon
and Weaver, 1949).
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volving the total waiting time for a request in a VOD network. The overall architecture for the

simulation software 1s presented in Figure 2.

Priority 1 Queue

o000

Channel

Priority 2 Queue Q O

©0o0

Figure 2. High-level structure of the simulation environment. The service policy is first-in-first-out
within priority; that is, a priority 1 request supersedes a priority 2 request. Pre-
emption is disallowed: a new job must await the completion of a job in process. In
particular, a priority 1 job must wait the completion of a priority 2 job if the latter is

aready in midstream.

The mputs into the predictive system consisted of three sources: the interarrival time (x), the
transmission time (y), and the priority (r) of requests. We assumed that x would follow the

Henon model and y the Lorentz process*, while r would be a random process, as indicated in

Table 1.

2) The Henon and Lorentz models represent chaotic processes which are difficult to predict. The two pro-
cesses are often utilized in chaotic analyses due to the simplicity of the models, which nevertheless
yield such complex behavior.

However, as in simulation in general, the exact nature of the process is not critical for our investiga-
tion. The important point is the need for a fixed stream of data points to use across trials in order to
compare different forecasting models.
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Table 1. List of variables. The aggregate waiting time w depends on the interarrival time, trans-

mission time, and the priority of request.

Variable Description Generation
x interarrival time Henon
y transmission time (size of file) Lorentz
r priority of request Random
w aggregate walting time Simulation output

The total waiting time w, Is the longest wait at time t among all the jobs currently in the
system. More precisely, let w; be the waiting time for job j at time #; that is, the time elapsed
since its arrival into the system. Then the total waiting time w is defined as the cumulative

delay before the last job begins service:
w = 2w,

The total waiting time depends on variables x, y, and r.

The Henon model is a discrete system which takes the following form.

X1 — 1- Axtz + ¥

yuw1 = Bx,

The Henon model exhibits chaotic behavior for parameter values A = 1.4 and B = 0.3. The

corresponding observations are depicted in Figure 3.

Henon model

X[ S [N S O -

Figure 3. Plot of the general Henon model.
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The discrete version of the Lorentz model takes the following form.”

i = (1 — oat)x, + (oAl)y,
Yoy = (1 — Aat)y, + (R — z)Atx
2o = (1 — bA)z, + x, Y, AT

Chaotic behavior arises for the following parameter values: ¢ = 10, Aot = 0.025, R = 28, and

b = 8/3. The associated trajectory is portrayed in Figure 4.

/

Figure 4. Plot of the general Lorentz model.

In this paper, the Henon and l.orentz data were rescaled to the range between 0 and 1. The

resulting process along a single dimension is shown in Figures 5 and 6, respectively. The Henon

3) The roots of the Lorentz process lie in a meterological model(l.orentz, 1963). The model, however, can
- and often i1s - regarded as a generic description of a chaotic process. As indicated in the previous
footnote, the interpretation of the 3 variables in the model is of no significance in employing the model
to generate a nonlinear data series. In particular, any of the 3 variables may be regarded as a quasi-
random variable to yield a chaotic sequence.
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series was used as Input values for the interarrival time x, and the l.orentz series for the trans-

mission time .
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Figure 5. Partial plot of 100 interarrival times for a Henon process.

T

111 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191
jobs

Figure 6. Partial plot of 200 transmission times for a Lorenz process.

A random number generator was utilized to determine the priority r of each request or job: 1 for high

priority, and 2 for low priority. A partial plot of the generated priorily values is presented in Figure 7.
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priority

u

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
jobs

Figure 7. Partial plot of 100 priority values through random number generation.

The data sets were used as inputs into the simulation architecture shown in Figure 2. The out-
put of the simulation model was the aggregate waiting time w, for 4 Job which entered the

system at time t Figure 8 depicts the resulting sequence of observations.

14
12
10

Aggregate Waiting Time

LI rhil,

117 33 49 65 82 98 116 132 148 163 180 197 213 231 247 262 278 294 311

time

Figure 8. Aggregate waiting time as a function of time.
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The induction process embodied in the ID3 algorithm generated a sequence of discrete classifica-
tions. Given the nature of the ID3 procedure as well as the genetic algorithm, forecasts from
these techniques involved a bipolar output.

Since the number and size of each job in the system was known at any time ¢, the delay to be ex-
perienced by a new job could be easily determined. In other words, w, was known at each period &

On the other hand, the arrival time and size of the subsequent job would still be unknown.
Hence w,., could only be estimated. In this context, the forecasting task was to determine wheth-

er or not the expected value of w., would exceed the current value of w,. That is, whether
Elw.)) = w, (Eq 1)

where E denotes the expectation operator. If Eq. (1) held, then the output was 1: otherwise it
was 0. In other words, the predictive task was to anticipate whether the total waiting time at the
next period would be longer or shorter than at time f. For consistency, the outputs from the
neural network and CBR were also converted into binary form.

For the predictive task, the input vector consisted of a contiguous list of 4 lagged variables. In
other words, the objective at each period t was to forecast w,., based on observed values w,, w,.
,, and w. .. The data set was partitioned into three consecutive samples: Segments A, B, and C.
For the first stage of the investigation, the elementary learning techniques were trained on Seg-

ment A and tested on Segment B.

—A—pred
—>—real

Aggregate Waiting Time

Figure 9. Actual aggregate waiting time versus forecasts using NN.

The architecture involved 3 input nodes, 5 hidden nodes, and 1 output node.
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Figure 9 presents a comparison of actual observations against forecasts from the neural net-
work. A similar set of results is shown for CBR in Figure 10. Moreover, the induction algorithm

produced a decision tree which is portrayed in Figure 11.

—&—pred
2 real |

Aggregate Waiting Time
(o2}

JRI Al

0 6 13 19 25 31 37 43 49 54 60 €7 73 79 85 91 97 104

Time

Figure 10. Actual aggregate waiting time versus forecasts using CBR.
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Figure 11. Induction tree by ID3 algorithm.

The elementary algorithms were compared against the metric of hit rate: the proportion of cor-
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rect forecasts. According to this measure, CBR and BPN outperformed the induction algorithm.
Consequently, CBR and BPN were selected as the first stage of the integrated architecture. The sec-
ond stage involved induction, based on the data and outputs from the first stage of the Investigations.
For the integrated architecture, the inductive module was trained on the data and results asso-
ciated with Segment B of the data set. The objective of the second stage was to ascertain wheth-
er the output from CBR would be more accurate than from BPN, and vice versa.
The training and testing procedures are depicted in Figure 12. After the training phase, the second-

stage module of the integrated architecture produced a decision tree as depicted in Figure 13.

Segment A CBR BP.N.
training training

Segment B CBR + BPN || INDUCTION
testing testing training

Segment C CBR BPN INDUCTION
testing testing testing

Figure 12. Segmentation of data sets to investigate second-order learning.

{ |

Figure 13. Induction tree generated by second-order learning.
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Finally, all 4 architectures were tested against Segment C of the data set. The graphic results
in Figure 14 indicate that the induction algorithm performed the worst, while the integrated archi-

tecture bested the others. The hit rates are also presented numerically in Table 2.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Hit Rate

CBR BPN D3 2nd
Model

Figure 14. Hit rates resulting from forecasts of the aggregate

waiting time for Segment C of the training data.

The collection of pairwise t-tests in Table 3 reveals that the superiority of the integrated meth-
od was statistically significant. Moreover, the other 3 techniques did not differ from each other in

a statistically convincing fashion.

Table 2. Comparison of predictive methods. Table 3. Pairwise tests for proportions using
the metric of hit rate in predicting the ag-
Method Hit Rate gregate waiting time. The first entry in
CBR 0.737 each cell presents the z-value whie the
BPN 0.719 significance level is shown in parentheses.
Induction 0.690 BPN D3 ond
Second-order 0.831 CBR 0.365 0.957 -2.120
(0.716) (0.339) (0.034)
BPN 0.593 -2.478
(0.554) (0.014)
D3 -3.058

(0.002)
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CONCLUSIONS

This paper has presented a comparative study of knowledge-based methods for predicting the
dynamic behavior of complex systems incorporating chaotic and random characteristics. The ap-
proach was validated through a case study involving video-on-demand.

The neural network, case based reasoning, and inductive methods yielded no significant differ-
ences among themselves. However, second-order learning bested the others at a statistically signif-
icant level.

This result was especially remarkable given that the second-order architecture employed the in-
ductive procedure, which had yielded the poorest performance among elementary techniques dur-
ing the first round of experiments. The effectiveness of the second-order architecture indicates
that superior results can emerge through a synergistic interaction of inferior components.

In brief, the results indicate that the complexity inherent in developing a learning system for
practical applications can be addressed by the judicious use of a spectrum of methodologies from
data mining. Moreover, an integrated method involving second-order learning can significantly

outperform more elementary approaches.
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